
www.manaraa.com

Fachbereich 4: Informatik

Taxonomy for Web-programming
technologies

Diplomarbeit
zur Erlangung des Grades eines Diplom-Informatikers

im Studiengang Informatik

vorgelegt von

Tobias Zimmer

Erstgutachter: Ralf Lämmel
Institut für Informatik

Zweitgutachter: Andrei Varanovich
Institut für Informatik

Koblenz, im Februar 2012

www.manaraa.com

Erklärung

Ich versichere, dass ich die vorliegende Arbeit selbständig verfasst und keine an-
deren als die angegebenen Quellen und Hilfsmittel benutzt habe.

Ja Nein

Mit der Einstellung der Arbeit in die Bibliothek bin ich einver-
standen.

� �

Der Veröffentlichung dieser Arbeit im Internet stimme ich zu. � �

. .
(Ort, Datum) (Unterschrift)

www.manaraa.com

Zusammenfassung
Zur Entwicklung von Webanwendungen und Webseiten existieren viele verschiedene Tech-
nologien und Konzepte. Jede dieser Technologien implementiert bestimmte Anforderun-
gen, wie z.B. das Erzeugen von Inhalten oder die Kommunikation zwischen Client und
Server. Verschiedene Konzepte helfen, diese Technologien innerhalb einer Webanwendung
zusammenzufügen. Nicht zuletzt Architekturstile und -muster gehören zu diesen Konzep-
ten. Die Diplomarbeit beschreibt einen Ansatz zur Erstellung einer Taxonomie dieser Tech-
nologien und Konzepte unter Zuhilfenahme der freien Enzyclopädie Wikipedia, im spezi-
ellen der Kategorie ”Web-Application Framework”. Unser 101companies Projekt benutzt
Implementationen, um die einem Web-Application-Framework zugrunde liegenden Tech-
nologien zu identifizieren und zu klassifizieren. Innerhalb des Projekts werden Taxono-
mien und Ontologien mit Hilfe dieser Klassifikationen erstellt. Zusätzlich beschreibt die
Ausarbeitung, wie nützliche Web-Application-Frameworks mit der Hilfe von Wikipedia
priorisiert werden. Abschlies̈end enthält die Diplomarbeit auch die Dokumentation der be-
treffenden Implementationen.

www.manaraa.com

Abstract
Web-programming is a huge field of different technologies and concepts. Each technology
implements a web-application requirement like content generation or client-server com-
munication. Different technologies within one application are organized by concepts, for
example architectural patterns. The thesis describes an approach for creating a taxonomy
about these web-programming components using the free encyclopaedia Wikipedia. Our
101companies project uses implementations to identify and classify the different technol-
ogy sets and concepts behind a web-application framework. These classifications can be
used to create taxonomies and ontologies within the project. The thesis also describes,
how we priorize useful web-application frameworks with the help of Wikipedia. Finally,
the created implementations concerning web-programming are documented.

www.manaraa.com

Acknowledgements
It is a pleasure to thank Ralf Lämmel (Software Languages Team, Koblenz) and Andrei
Varanovich (Software Languages Team, Koblenz) for great support and guidance during
the development of the thesis. I also would like to thank Thomas Schmorleiz and Sebastian
Jackel for the help and the useful feedback. Finally, I want to thank my family and friends
for their patience.

www.manaraa.com

Contents

1 Introduction 10
1.1 Motivation . 10
1.2 Thesis structure . 11

1.2.1 Structure of implementation documentations 11

2 Popular web-application frameworks 13
2.1 Subjects of research . 13

2.1.1 Definition: Web-application framework 13
2.1.2 Language-related technology setup 14
2.1.3 Web-application framework setup 14
2.1.4 Comparison . 17

2.2 Research question . 18
2.2.1 Definition: popular . 18

2.3 Research Method . 18
2.3.1 Counting occurences . 19
2.3.2 Counting backlinks . 22

2.4 Results . 22
2.4.1 Measurements . 22
2.4.2 Interpretation . 26

2.5 Threats to validity . 27
2.5.1 Tools . 28
2.5.2 Implementations . 28

3 Related work 30
3.1 Taxonomies and classifications . 30
3.2 Building the taxonomy . 31
3.3 Web-application frameworks . 32
3.4 Architecture . 32

4 101companies features 33
4.1 Features of the 101companies project 33

5 Implementations 35
5.1 101implementation html5local . 35

5.1.1 Intent . 35
5.1.2 Languages . 35
5.1.3 Technologies . 35
5.1.4 Features . 35

5

http://101companies.org/index.php/101implementation:html5local

www.manaraa.com

CONTENTS 6

5.1.5 Motivation . 36
5.1.6 Illustration . 36
5.1.7 Architecture . 39
5.1.8 Usage . 39

5.2 101implementation html5indexedDatabase 40
5.2.1 Intent . 40
5.2.2 Languages . 40
5.2.3 Technologies . 40
5.2.4 Features . 40
5.2.5 Motivation . 40
5.2.6 Illustration . 40
5.2.7 Architecture . 43
5.2.8 Usage . 43

5.3 101implementation html5XMLHttpRequest 44
5.3.1 Intent . 44
5.3.2 Languages . 44
5.3.3 Technologies . 44
5.3.4 Features . 44
5.3.5 Motivation . 44
5.3.6 Illustration . 45
5.3.7 Architecture . 48
5.3.8 Usage . 48

5.4 101implementation html5ajax . 49
5.4.1 Intent . 49
5.4.2 Languages . 49
5.4.3 Technologies . 49
5.4.4 Features . 49
5.4.5 Motivation . 49
5.4.6 Illustration . 50
5.4.7 Architecture . 51
5.4.8 Usage . 52

5.5 101implementation html5tree . 53
5.5.1 Intent . 53
5.5.2 Languages . 53
5.5.3 Technologies . 53
5.5.4 Features . 53
5.5.5 Motivation . 54
5.5.6 Illustration . 54
5.5.7 Architecture . 57
5.5.8 Usage . 58

5.6 101implementation jsf . 59
5.6.1 Intent . 59
5.6.2 Languages . 59
5.6.3 Technologies . 59
5.6.4 Features . 59
5.6.5 Motivation . 60
5.6.6 Illustration . 60
5.6.7 Architecture . 63
5.6.8 Usage . 64

http://101companies.org/index.php/101implementation:html5indexedDatabase
http://101companies.org/index.php/101implementation:html5XMLHttpRequest
http://101companies.org/index.php/101implementation:html5ajax
http://101companies.org/index.php/101implementation:html5tree
http://101companies.org/index.php/101implementation:jsf

www.manaraa.com

CONTENTS 7

5.7 101implementation zend . 65
5.7.1 Intent . 65
5.7.2 Languages . 65
5.7.3 Technologies . 65
5.7.4 Features . 65
5.7.5 Motivation . 65
5.7.6 Illustration . 65
5.7.7 Architecture . 69
5.7.8 Usage . 69

5.8 101implementation pyjamas . 70
5.8.1 Intent . 70
5.8.2 Languages . 70
5.8.3 Technologies . 70
5.8.4 Features . 70
5.8.5 Motivation . 70
5.8.6 Illustration . 70
5.8.7 Architecture . 72
5.8.8 Usage . 72

5.9 101implementation gwtTree . 73
5.9.1 Intent . 73
5.9.2 Languages . 73
5.9.3 Technologies . 73
5.9.4 Features . 73
5.9.5 Motivation . 73
5.9.6 Illustration . 74
5.9.7 Architecture . 78
5.9.8 Usage . 78

5.10 101implementation seam . 79
5.10.1 Intent . 79
5.10.2 Languages . 79
5.10.3 Technologies . 79
5.10.4 Features . 79
5.10.5 Motivation . 79
5.10.6 Illustration . 80
5.10.7 Architecture . 82
5.10.8 Usage . 82

5.11 101implementation strutsAnnotation . 84
5.11.1 Intent . 84
5.11.2 Languages . 84
5.11.3 Technologies . 84
5.11.4 Features . 84
5.11.5 Motivation . 84
5.11.6 Illustration . 85
5.11.7 Architecture . 87
5.11.8 Usage . 87

5.12 101implementation silverlight . 89
5.12.1 Intent . 89
5.12.2 Languages . 89
5.12.3 Technologies . 89

http://101companies.org/index.php/101implementation:zend
http://101companies.org/index.php/101implementation:pyjamas
http://101companies.org/index.php/101implementation:gwtTree
http://101companies.org/index.php/101implementation:seam
http://101companies.org/index.php/101implementation:strutsAnnotation
http://101companies.org/index.php/101implementation:silverlight

www.manaraa.com

CONTENTS 8

5.12.4 Features . 89
5.12.5 Motivation . 89
5.12.6 Illustration . 89
5.12.7 Architecture . 91
5.12.8 Usage . 91

5.13 101implementation wcf . 92
5.13.1 Intent . 92
5.13.2 Languages . 92
5.13.3 Technologies . 92
5.13.4 Features . 92
5.13.5 Motivation . 92
5.13.6 Illustration . 93
5.13.7 Architecture . 95
5.13.8 Usage . 96

6 Conclusion 97

A Terms and Technologies 99
A.1 Ajax . 99

A.1.1 Intent . 99
A.1.2 Description . 99
A.1.3 Technologies . 99

A.2 MVC . 99
A.2.1 Intent . 99
A.2.2 Discussion . 100

A.3 Technology JSF . 100
A.3.1 Intent . 100
A.3.2 Description . 100
A.3.3 Technologies . 100

A.4 Technology Pyjamas . 100
A.4.1 Intent . 100
A.4.2 Description . 100
A.4.3 Technologies . 101

A.5 Technology Zend framework . 101
A.5.1 Intent . 101
A.5.2 Description . 101
A.5.3 Technologies . 101

A.6 Technology GWT . 101
A.6.1 Intent . 101
A.6.2 Description . 101
A.6.3 Technologies . 101

A.7 Technology Apache Struts . 102
A.7.1 Intent . 102
A.7.2 Description . 102
A.7.3 Technologies . 102

A.8 Technology Seam . 102
A.8.1 Intent . 102
A.8.2 Description . 102
A.8.3 Technologies . 102

A.9 Technology XMLHttpRequest . 103

http://101companies.org/index.php/101implementation:wcf
http://101companies.org/index.php/Ajax
http://101companies.org/index.php/MVC
http://101companies.org/index.php/Technology:JSF
http://101companies.org/index.php/Technology:Pyjamas
http://101companies.org/index.php/Technology:Zend framework
http://101companies.org/index.php/Technology:GWT
http://101companies.org/index.php/Technology:Apache Struts
http://101companies.org/index.php/Technology:Seam
http://101companies.org/index.php/Technology:XMLHttpRequest

www.manaraa.com

CONTENTS 9

A.9.1 Intent . 103
A.9.2 Discussion . 103

A.10 Technology IndexedDB . 103
A.10.1 Intent . 103
A.10.2 Discussion . 103

A.11 Technology Web storage . 103
A.11.1 Intent . 103
A.11.2 Discussion . 103

A.12 Technology Silverlight . 104
A.12.1 Intent . 104
A.12.2 Discussion . 104

A.13 Technology WCF . 104
A.13.1 Intent . 104
A.13.2 Discussion . 104

http://101companies.org/index.php/Technology:IndexedDB
http://101companies.org/index.php/Technology:Web storage
http://101companies.org/index.php/Technology:Silverlight
http://101companies.org/index.php/Technology:WCF

www.manaraa.com

Chapter 1

Introduction

1.1 Motivation
The evolution of web application development over the past years leads to a huge amount of
web-programming technologies related to different programming languages and different
use cases. There are countless approaches for data access, client-server communication,
GUI development and the improvement of the development process itself. The summary
and classification of the web-programming technologies leads to several challenges. It is
difficult to classify a technology if the vendor of the technology changes its strategy or sim-
ple technological evolution leads to different approaches. And it is nearly impossible to get
a complete overview of all related technologies. A survey (e.g., ”Survey of Technologies
for Web Application Development” [8]) can provide a classification of a fixed technology
set within a fixed domain at a fixed time. Our approach is, to gain more flexibility due
to the use of a MediaWiki system [9]. The underlying project is called ”101companies
project” [17]. It identifies technologies and concepts with the help of implementations,
which are documented in a defined manner. The implementations shall help to classify and
present included technologies and concepts. The advantages of the MediaWiki approach
are adaptability and extensibility. That helps to follow technological evolution and strategy
changes and to extend the system by new technologies and concepts. Furthermore, it pro-
vides a support for categorization and ontology overviews. The ”101companies project”
uses well-documented implementations based on different technologies to get an empiri-
cal entry point for creating classifications and ontologies (see Fig. 1.1) of technology sets.
Each implementation is based on a fixed set of use cases build upon specific requirements1.
Since the project contains a huge field of different programming scopes, it also provides a
connection between ”regular programming” and ”web programming” [8].

The web development domain includes many different web-programming technologies.
Hence, it is difficult to find reasonable technologies for our ”101companies project” im-
plementations. The first intention of the thesis is to identify such a set of technologies. The
contained elements should be well definable and classifiable. We describe and evaluate
two different approaches within the thesis. The first approach is programming-language
centered and the second is category2 centered. We use the free encyclopaedia Wikipedia3

1http://101companies.org/index.php/101companies:System
2http://en.wikipedia.org/wiki/Wikipedia:Categorization
3http://en.wikipedia.org/

10

http://101companies.org/index.php/101companies:System
http://en.wikipedia.org/wiki/Wikipedia:Categorization
http://en.wikipedia.org/

www.manaraa.com

CHAPTER 1. INTRODUCTION 11

Figure 1.1: 101companies ontology example

to get a key category for the identification of web-programming technologies. As we see
in the following chapters, the second approachs leads to the widely used term and category
”web-application framework”. The second intention of the thesis is to introduce a first
subset of the identified technologies within implementations, and document them using
our MediaWiki system. We will also show, that there are intersections between regular
programming and web programming.

1.2 Thesis structure
The thesis is divided into three main chapters. In the second chapter, we discribed the
two language-centered and category-centered approaches. We evaluate them and show,
why our decision is on the second. At the end, we present the results of the initial web-
programming technology set. The following chapter points to the related work. It de-
scribes, where we get our ideas from and which work might be helpful or interesting for
the future. The fourth chapter illustrates the feature coverage of the implementations. It is
followed by the documentation chapter of the implementations provided by the ”101com-
panies project”. It is strongly recommended to visit the MediaWiki system to read the
documentations although they are completely contained in the thesis. At last, there is a
conclusion about our measurements and achievements. We now want to further describe
the structure of each implementation documentation included in the thesis.

1.2.1 Structure of implementation documentations
The implementation documentations are structured equally to each other. The guideline
to the ”101companies project” [16] provides a couple of mandatory sections for every
implementation page in a given order. The Intent alleviates the primary classification of
the implementation. Both, the Languages and Technologies section are mandatory for the
taxonomy since they contain the most significant relationships to supporting technologies.
The Features list is necessary for documenting the standardization of all implementations
within the 101companies project. The Motivation contains a short abstract about the im-
plementation pointing to the most interesting parts. It also introduces important concepts

www.manaraa.com

CHAPTER 1. INTRODUCTION 12

for our taxonomy and distinguishes the specific implementation against the others. The
concrete use of technologies, patterns, and concepts is described within the Illustration
section. The Architecture section helps to find the relevant parts of the application in the
file system. And finally the Usage section describes the installation, compilation, and/or
opening of the developed web-application.

www.manaraa.com

Chapter 2

Popular web-application
frameworks

2.1 Subjects of research
As mentioned in the introduction, there are two different approaches for the assembly
of web-programming technologies. The first approach uses relations between languages
and technologies. The second approach uses relations between an overall category called
”web-application framework” and technologies and languages. Before we are able to talk
about the two approaches, we have to define the term ”web-application framework”. After
that, we describe the character of the two approaches as well as their advantages and dis-
advantages. We also explain our preference for the ”web-application framework”-category
approach.

2.1.1 Definition: Web-application framework
The first step is to split the term into two parts: ”web application” and ”framework”. The
parts are defined as follows:

Web application ”A Web application is a software system based on technologies
and standards of the World Wide Web Consortium (W3C) that
provides Web specific resources such as content and services
through a user interface, the Web browser.” [14]

Framework ”A framework is a model of a particular domain or an important
aspect therof. A framework may model any domain, be it a tech-
nical domain like distribution or garbage collection, or an appli-
cation domain like banking or insurance. A framework provides
a reusable design and reusable implementations to clients.”[29]
”A software framework is a set of code or libraries which provide
functionality common to a whole class of applications. While
one library will usually provide one specific piece of function-
ality, frameworks will offer a broader range which are all often
used by one type of application.”[7]

13

www.manaraa.com

CHAPTER 2. POPULAR WEB-APPLICATION FRAMEWORKS 14

Consequentialy, a framework in the context of computer science is definable with a set of
attributes. A framework

• has a domain,

• is build up of a set of code or libraries,

• is reusable,

• provides and demands reusable design,

• and supports the development of an application in its certain domain.

If web-application development is the domain, the framework is called ”web-application
framework”.

2.1.2 Language-related technology setup
There are several relations between programming languages and technologies. An exam-
ple in the web-programming domain is the markup language HTML. The language leads to
technologies or complete technology sets such as defined in the HTML5 specification [33].
HTML5 includes many different technologies and JavaScript APIs like XMLHttpRequest,
Drag and Drop or Canvas. But there are also some technologies for similar issues like Web
storage and IndexedDB. XMLHttpRequest is used for client-server communication, while
Drag and Drop is used to improve user interfaces and Canvas is used to draw graphics.
Both, Web storage and IndexedDB help to store larger amounts of data at the client side of
the application.

Mathematically spoken, there is a set L of all software languages and a set T of all soft-
ware technologies. We select two subsets WL ⊆ L and WT ⊆ T . WL contains all
software languages used for web programming or used with web-programming technolo-
gies. WT contains all web-programming technologies1. A language l ∈ WL relates to
a web-programming setup Sl ⊆ WT . That means, that a specific requirement of a web
application written in the language l is resolvable with the technology t ∈ Sl. For exam-
ple, client-server communication in HTML-based web applications can be handled with
the XMLHttpRequest technology. We consider the requirement dependency between a
language and its technologies as relation Rl. Sl is the range of Rl. A technology t itself
possibly also relates to other languages WLt

including the initial language. For example,
XMLHttpRequest also requires JavaScript within the application.

Rl ⊆WL ×WT

Rl = {(l, t1), (l, t2), ..., (l, tn)}
RL =

⋃
l∈WL

Rl

Sl = range(Rl)

2.1.3 Web-application framework setup
The internet encyclopedia Wikipedia provides a structured system for software categories2.
The idea is to use this system for identifiing a key category of web-programming technolo-
gies. The infobox included in many software pages of Wikipedia contains a field ”Type”,

1We never want to claim, that we are able to collect all web-programming technologies
2http://en.wikipedia.org/wiki/List_of_software_categories

http://en.wikipedia.org/wiki/List_of_software_categories

www.manaraa.com

CHAPTER 2. POPULAR WEB-APPLICATION FRAMEWORKS 15

which refers to such a category or a set of categories (see Fig. 2.1.3). It is possible to
identify the most frequently used categories for the type within a set of Wikipedia pages.
The challenge is to find a reasonable set of pages related to web programming.

Figure 2.1: Type annotation of the Seaside Wikipedia page

Our research domain is ”web programming”. The Wikipedia page for ”web programming”
is redirected to the ”web development” page. Hence, we use the page for ”web develop-
ment”3 as initial point for the identification of the set of pages. The Wikipedia API helps
us to get a set of all pages within Wikipedia, which are referenced by ”web development”.
We extend the set by all pages referenced by an item within the set. Hence, the maximum
distance d between the ”web development” page and the collected pages is d = 2. The
result contains 9076 items4. An infobox is included by 551 of them.

The highest ranked categories are ”web browser” and ”web-application framework” (see
Tab. 2.1 and Fig. 2.2 for the spreading5). Web browser are dedicated to present web con-
tent [14]. They are definitely the essential component of all web applications. But since we
want to focus on different web-programming technologies, we choose ”web-application
framework” as the key category for further research.

We now are able to collect all web-application frameworks contained in Wikipedia and
to rank them. Mathematically spoken, we keep the sets of technologies T and web-
programming technologies WT of the first approach. The set of web-application frame-
works WF is a subset of WT .

3http://en.wikipedia.org/wiki/Web_development
4last calculated at 20. Nov. 2011 with Wikipedia API
5last calculated at 17. Jan. 2012 using the content of the 9076 Wikipedia pages

http://en.wikipedia.org/wiki/Web_development

www.manaraa.com

CHAPTER 2. POPULAR WEB-APPLICATION FRAMEWORKS 16

Table 2.1: Top 10 results of the type identification
Rank Type Frequency

1 web browser 89
2 web application framework 74
3 text editor 29
4 integrated development environment 28
5 html editor 25
6 web server 22
7 rdbms 19
8 application server 18
9 content management system 17
10 ide 16
...

...
...

Figure 2.2: Spreading of the type identification

www.manaraa.com

CHAPTER 2. POPULAR WEB-APPLICATION FRAMEWORKS 17

2.1.4 Comparison
There are many differences between the two approaches. The first, language-centered ap-
proach leads to a set of incoherent technologies. Apart from the language, there are no
criteria connecting the items within the set. We have to identify the characteristics for each
technology, before we are able to implement a new web-application with the help of the
specific technology. We used HTML, specifically the standard subset HTML5, as an ex-
ample language for the approach. The advantage of the language is, that it is intrinsically
tied to web-programming. Many other web-related languages like Java are also connected
to regular programming. If we collect a set of technologies for such a language, it contains
a huge amount of items which do not fit to the web theme.

Another way dealing with the first approach is to find a technology for the specific lan-
guage, which fits to a criterion or requirement, that is previously defined. An example for
HTML is ”XMLHttpRequest”, which fits to the client-server communication requirement.
The illustration of the technology leads to other issues. In the first case, we have to code
pure HTML and JavaScript. The effort for such an implementation is consequentially high,
because all other requirements of 101companies have to be implemented handcrafted. In
the second case, we have to search for supporting technologies which are suitable for our
example. It is a matter of experience and knowing the right concepts to find good solutions.
We need significant manpower to solve the respective issue.

The second web-application framework centered approach leads to a set of coherent tech-
nologies. They are connected by a well defined web-related category (see Sec. 2.1.1). A
web-application framework combines technologies to solve the basic requirements of web
applications. In terms of 101companies, the center requirement is the feature ”Web UI”6:
The application has a user interface presented by the web browser. A web-application
framework provides support for generating the presentable content by definition. It also
provides a reusable design. The defined design helps to find other supporting technologies
to create an implementation. The quality of the implementation definetly also depends on
the experience of the developers. But it is easier to search for and learn about new tech-
nologies if the developer knows about the names and characteristics.

Concluding, there is also a mathematical difference between the two sets Sl (language-
related technologies) and WF (web-application frameworks). While Sl is an abstract con-
struct, WF is well defined. That is why we continue with the second approach searching
for web-application frameworks. We want to priorize the set WF to get a sequence of
frameworks, ordered by popularity.

6http://101companies.org/index.php/101feature:Web_UI

http://101companies.org/index.php/101feature:Web_UI

www.manaraa.com

CHAPTER 2. POPULAR WEB-APPLICATION FRAMEWORKS 18

2.2 Research question
After choosing the ”web-application framework” category for the identification of web-
programming technologies, we face the question, how we are able to priorize these tech-
nologies. Our approach is to focus on the popularity of web-application frameworks. It
leads to the following questions, which have to be answered in this chapter:

1. What are reasonable methods and tools to get informations about the popularity of
web-application frameworks?

2. What are reasonable web-application frameworks for the 101companies project?

2.2.1 Definition: popular
Before we are able to talk about ”popular web-application frameworks”, we have to define
the meaning of the quality assessment ”popular”. We consider a ”popular” technology as a
widely used technology in the specific domain of programming. Hence, it is proven, used
and accepted by developers. In our case, a ”popular web-application framework” is widely
used in the domain of web programming.

2.3 Research Method
The initial idea is to use group intelligence to determine the most popular web-application
frameworks. As we have illustrated in the motivation (see Sec. 1.1), Wikipedia provides
a large amount of articles concerning web development and web-application frameworks
with the benefit of a categorization, created and maintained by many different people. The
assumption is, that if there is a well developed article about a web-application framework,
the technology is highly used by many people. The result defines the important web-
application frameworks for the 101companies project.

We use the Wikipedia categorization to get a full list of the web-application frameworks
contained in the encyclopedia. The frameworks are extracted directly from the category7

and template pages8. The category ”web-application framework” includes some useful
subcategories: ajax-, python-, psf- and rich-internet application frameworks. The result
of all the pages contains 146 different framework names with 15 different main cate-
gories9 (see Tab. 2.2). We assigned the main category to each framework manually. If the
Wikipedia page and the official page of the specific framework confirms that the frame-
work is a web-application framework or any of its subcategories, we pick that category.

We made the decision to filter out all categories except web-application frameworks and
Ajax frameworks. We include Ajax frameworks because the domain is nearly identical with
web-application frameworks, except that the communication between client and server is
performed via Ajax. We exclude categories like electronic commerce, because such frame-
works do not fit to our 101companies use cases. The focus of content-management systems

7http://en.wikipedia.org/wiki/Category:Web_application_
frameworks

8http://en.wikipedia.org/wiki/Template:Application_frameworks
9last calculated at 20. Nov. 2011 with category and template page for web-application frame-

works

http://en.wikipedia.org/wiki/Category:Web_application_frameworks
http://en.wikipedia.org/wiki/Category:Web_application_frameworks
http://en.wikipedia.org/wiki/Template:Application_frameworks

www.manaraa.com

CHAPTER 2. POPULAR WEB-APPLICATION FRAMEWORKS 19

Table 2.2: Main categories of the web-application framework list elements
Rank Main category Frequency

1 web application framework 93
2 javascript library 14
3 content management system 12
4 ajax framework 11
5 application server 3
6 multiple phone web based application framework 2

content management framework 2
software development platform 2

10 rich internet application framework 1
electronic commerce 1

content repository 1
webserver 1

development environment 1
library 1

(CMS) often leads to social communities, although they are web-application frameworks,
too. We decided to exclude content-management systems because it leads to another field
of research. There are some interesting CMS, which should definitely be analyzed in the
future, for example TYPO3. We also excluded JavaScript libraries because they only sup-
port small specific parts concerning web-application development.

The result contains 103 remaining framework names (see Tab. 2.3, 2.4). They are presented
using three columns. The first column shows the name of the framework, the second one
shows the main category and the third one shows the mainly used languages for this par-
ticular framework. We extracted the languages manually for each framework by using the
Wikipedia page for ”comparison of web application frameworks”10 and the official frame-
work pages for each framework.

There are two different approaches, how to continue with the list to get informations about
the popularity of these frameworks:

counting occurences count all occurences within a given set of webpages
counting backlinks count all backlinks of the framework-page within all

wikipedia pages

The result of both approaches is presented as descending lists dependent on the number
of occurence of the framework name.

2.3.1 Counting occurences
The idea about counting occurences is to make a conclusion about the relevancy of a frame-
work based on a superior concept. We collect a set of pages S and count the occurences of

10http://en.wikipedia.org/wiki/Comparison_of_web_application_
frameworks

http://en.wikipedia.org/wiki/Comparison_of_web_application_frameworks
http://en.wikipedia.org/wiki/Comparison_of_web_application_frameworks

www.manaraa.com

CHAPTER 2. POPULAR WEB-APPLICATION FRAMEWORKS 20

Table 2.3: Framework-List extracted from Wikipedia (Part 1)
Language Category Language

AIDA/Web Web-application framework Smalltalk
Ajax4jsf Ajax framework Java

Apache MyFaces Web-application framework Java
Apache Struts Web-application framework Java

Apache Tapestry Web-application framework Java
Apache Wicket Web-application framework Java

Appcelerator Titanium Web-application framework JavaScript
AppFlower Web-application framework PHP

AppFuse Web-application framework Java
Apple iAd Producer Web-application framework JavaScript

ASP.NET Web-application framework .NET
ASP.NET Dynamic Data Web-application framework .NET

ASP.NET MVC Web-application framework .NET
Base One Foundation Component Library Web-application framework .NET

Bindows Ajax framework XML, JavaScript
CakePHP Web-application framework PHP
Camping Web-application framework Ruby

Cappuccino Web-application framework Objective-J
Catalyst Web-application framework Perl

CherryPy Web-application framework Python
CL-HTTP Web-application framework Common Lisp

CodeIgniter Web-application framework PHP
ColdFusion on Wheels Web-application framework CFML

ColdSpring Framework Web-application framework CFML
CppCMS Web-application framework C++

Dancer Web-application framework Perl
Django Web-application framework Python

DWR Ajax framework Java
Flask Web-application framework Python

FormEngine Web-application framework Java
Fusebox Web-application framework CFML, PHP

Genesis Smart Client Framework Web-application framework .NET, C Sharp
Gianduia Web-application framework JavaScript

Google Closure Tools Ajax framework JavaScript
Google Web Toolkit Ajax framework Java

Grails Web-application framework Groovy
Grok Web-application framework Python
Hobo Web-application framework DRYML, XML, Ruby

Horde Web-application framework PHP
ICEfaces Ajax framework Java

ItsNat Ajax framework Java
JavaServer Faces Web-application framework Java

JBoss Seam Web-application framework Java
Jspx-bay Web-application framework Java

Kepler Web-application framework Lua
Lift Web-application framework Scala

Lithium Web-application framework PHP
Mach-II Web-application framework CFML

Makumba Web-application framework Java
Mason Web-application framework Perl

Maypole framework Web-application framework Perl
Merb Web-application framework Ruby

www.manaraa.com

CHAPTER 2. POPULAR WEB-APPLICATION FRAMEWORKS 21

Table 2.4: Framework-List extracted from Wikipedia (Part 2)
Language Category Language

Microsoft Silverlight Web-application framework C Sharp
Model-Glue Web-application framework CFML

MonoRail Web-application framework .NET
Moonlight Web-application framework C Sharp

MyFaces Trinidad Web-application framework Java
Nagare Web-application framework Python
Nevow Web-application framework Python

Nitro Web-application framework Ruby
onTap Web-application framework CFML

OpenACS Web-application framework Tcl
OpenRasta Web-application framework .NET
OpenXava Web-application framework Java

Oracle ADF Web-application framework Java
Play Framework Web-application framework Java, Scala, Groovy, Python

Pyjamas Web-application framework Python
Pylons Web-application framework Python

Pyramid Web-application framework Python
Python Paste Web-application framework Python

Qcodo Web-application framework PHP
Quicknet Ajax framework JavaScript
Quixote Web-application framework Python
Ramaze Web-application framework Ruby

RapidSMS Web-application framework Python
Reasonable Server Faces Web-application framework Java

Rich Ajax Platform Web-application framework Java
RichFaces Ajax framework Java

Ruby on Rails Web-application framework Ruby
Sajax Ajax framework JavaScript

Seaside Web-application framework Smalltalk
Shale Framework Web-application framework Java

Sinatra Web-application framework Ruby
Spring Framework Web-application framework Java

SproutCore Web-application framework JavaScript
Spry framework Ajax framework JavaScript

Stripes Web-application framework Java
SymbolicWeb Web-application framework Common Lisp

Symfony Web-application framework PHP
TurboGears Web-application framework Python

UnCommon Web Web-application framework Common Lisp
Vaadin Web-application framework Java

web2py Web-application framework Python
Weblocks Web-application framework Common Lisp

Webware for Python Web-application framework Python
WebWork Web-application framework Java

Wt Web-application framework C++
xajax Ajax framework PHP, JavaScript

Yii Web-application framework PHP
Zend Framework Web-application framework PHP
Zeta Components Web-application framework PHP

ZK Web-application framework Java, ZUML

www.manaraa.com

CHAPTER 2. POPULAR WEB-APPLICATION FRAMEWORKS 22

the framework names once per page. The characteristics of the set of pages depends on the
initial page, which is identified by this superior concept. It depends on the maximum dis-
tance m of the method, if the other pages in the set are referenced directly or indirectly by
the initial page. If the maximum distance m is 1, the set contains only directly referenced
pages. The distance function calculates the value for each p ∈ S:

∀p ∈ S : distance(p) ≤ m

In our case, the superior concept is WEB DEVELOPMENT. The algorithm collects all
wikipedia pages referenced by the WEB DEVELOPMENT wikipedia-page11. The result is
sorted by quantity. The set S of the concerning web pages is collected via the Wikipedia
API12. We selected distance 2 for the algorithm.

2.3.2 Counting backlinks
The idea about counting backlinks is to make a conclusion about the relevancy of a frame-
work based on its occurences within all wikipedia pages. It means, in comparison to the
first approach, that all pages within Wikipedia represent the set of pages S. The Wikipedia
API helps to determine all backlinks for a given page, so that we do not need to collect all
wikipedia pages. Our scripts run through the web-application framework pages and counts
the backlinks leading to the specific pages.

2.4 Results
The tables13 2.5 and 2.6 show the ranked lists for each of the two approaches. The results
are presented as tables with the following three columns:

rank the rank of the observed framework
framework name the name of the observed framework
frequency the occurences of the framework name within the specific

set of Wikipedia pages dependent on the approach

In addition, we have created tag clouds (see Fig. 2.3 and 2.4) based on the frequency
of each framework.

2.4.1 Measurements
There is a certain amount of concordance between the two results. Most of the highly
frequent framework names occur on both tables in similar intervals. Google Web Toolkit
and ASP.NET take the lead. Apache Struts, Pyjamas and Ruby on Rails also occur on
both tables in more or less different positions between the top 10. Some of them manifest
highly different results like Microsoft silverlight. The issue is discussed in the following
interpretation. The following tables present the comparison between the first ten results of
each approach:

11http://en.wikipedia.org/wiki/Web_Development
12http://www.mediawiki.org/wiki/API:Main_page
13last calculated at 20. October 2011 with the Wikipedia API

http://en.wikipedia.org/wiki/Web_Development
http://www.mediawiki.org/wiki/API:Main_page

www.manaraa.com

CHAPTER 2. POPULAR WEB-APPLICATION FRAMEWORKS 23

Table 2.5: Framework frequency based on web development
Rank Freq. Framework Rank Freq. Framework
1 20 ASP.NET 40 11 OpenXava

20 Google Web Toolkit 11 SymbolicWeb
3 18 SproutCore 11 ColdSpring Framework
4 16 Pyjamas 11 Mach-II
5 15 Ruby on Rails 11 UnCommon Web

15 Apache Struts 11 MonoRail
7 13 ASP.NET Dynamic Data 11 Model-Glue

13 Dancer 11 OpenRasta
13 Catalyst 11 ICEfaces
13 Seaside 11 ColdFusion on Wheels
13 Grails 11 OpenACS
13 Apache Wicket 11 CL-HTTP
13 AIDA/Web 11 Reasonable Server Faces
13 Apache Tapestry 11 Lift

15 12 Horde 11 ItsNat
12 Camping 11 Fusebox
12 Nevow 11 Zend Framework
12 Mason 11 WebWork
12 Sinatra 11 Wt
12 Lithium 11 CppCMS
12 JBoss Seam 11 Makumba
12 TurboGears 11 BFC
12 CodeIgniter 11 Stripes
12 Microsoft Silverlight 11 Weblocks
12 Maypole framework 11 Play Framework
12 Ramaze 11 Jspx-bay
12 Flask 11 Vaadin
12 Hobo 11 AppFlower
12 Qcodo 68 10 ZK
12 JavaServer Faces 10 Cappuccino
12 Kepler 70 8 Moonlight
12 CakePHP 71 5 Spry framework
12 Nitro 72 2 Google Closure Tools
12 Symfony 2 Apache MyFaces
12 Spring Framework 2 Django
12 Merb 75 1 DWR

37 11 Zeta Components 1 CherryPy
11 AppFuse 1 Apple iAd Producer
11 Yii 1 Quixote

www.manaraa.com

CHAPTER 2. POPULAR WEB-APPLICATION FRAMEWORKS 24

Table 2.6: Framework frequency based on backlinks
Rank Freq. Framework Rank Freq. Framework
1 651 Microsoft Silverlight 52 147 Zeta Components
2 545 ASP.NET 53 146 WebWork
3 524 Google Web Toolkit 146 Vaadin
4 401 Ruby on Rails 55 145 Lift
5 328 Apache Struts 145 Stripes
6 263 Pyjamas 145 Play Framework
7 258 Apache Wicket 58 144 ICEfaces
8 247 Apache Tapestry 144 OpenXava
9 221 Spring Framework 60 143 Nevow
10 215 ASP.NET Dynamic Data 61 142 AIDA/Web
11 212 Google Closure Tools 142 Wt
12 209 SproutCore 63 141 ItsNat
13 194 JavaServer Faces 141 AppFlower
14 191 Horde 141 MonoRail
15 188 Catalyst 66 139 Makumba
16 181 UnCommon Web 139 CppCMS

181 Zend Framework 139 AppFuse
18 180 CL-HTTP 139 OpenRasta

180 Weblocks 139 Jspx-bay
180 SymbolicWeb 71 138 Reasonable Server Faces

21 176 Sinatra 72 118 Moonlight
22 174 Merb 73 114 Apache MyFaces
23 172 Camping 74 93 Cappuccino

172 Symfony 75 68 Spry framework
25 171 CakePHP 76 55 Apple iAd Producer

171 Nitro 77 27 CherryPy
27 169 Mason 78 21 Django

169 Ramaze 79 17 Quixote
29 168 Hobo 80 12 RichFaces
30 167 TurboGears 81 9 ASP.NET MVC
31 165 Dancer 82 8 Appcelerator Titanium

165 Maypole framework 83 6 Pyramid
33 164 web2py 84 5 Grok

164 Kepler 5 Shale Framework
35 159 CodeIgniter 5 Pylons
36 158 Grails 5 Python Paste
37 157 Flask 88 4 DWR

157 Seaside 89 3 FormEngine
157 JBoss Seam 3 RapidSMS

40 155 Yii 3 Webware for Python
41 153 Fusebox 3 xajax
42 152 Mach-II 93 2 Ajax4jsf

152 ColdFusion on Wheels 2 MyFaces Trinidad
44 151 Qcodo 2 Nagare
45 150 OpenACS 2 Quicknet
46 149 Model-Glue 2 Sajax

149 ZK 98 1 Gianduia
149 Lithium 1 Bindows

49 148 onTap 1 Rich Ajax Platform
148 BFC 101 0 Genesis Smart Client Frame-

work
51 147 ColdSpring Framework

www.manaraa.com

CHAPTER 2. POPULAR WEB-APPLICATION FRAMEWORKS 25

Figure 2.3: tag cloud of the web development based frequency

Figure 2.4: tag clound of the backlinks frequency

www.manaraa.com

CHAPTER 2. POPULAR WEB-APPLICATION FRAMEWORKS 26

Table 2.7: Top 10 web development based frequency compared to backlink fre-
quency

Web development based frequency Backlink frequency
Framework Frequency Position Frequency

1 ASP.NET 20 2 545
Google Web Toolkit 20 3 524

3 SproutCore 18 12 209
4 Pyjamas 16 6 263
5 Ruby on Rails 15 4 401

Apache Struts 15 5 328
7 ASP.NET Dynamic Data 13 10 215

Dancer 13 31 165
Catalyst 13 15 188
Seaside 13 37 157

2.4.2 Interpretation
As we have mentioned before, there are several results out of alignment. The best example
is Microsoft Silverlight. It is on top of the backlink frequency-list but it is only on the
fifteens rank at the web-development based frequency-list. The distance between the first
and the following ranks is significant in both frequency lists. In this particular case, the
comparison between the first and the fourteenth rank leads to following result:

• Web development based frequency:

f15
f1

= 12
20 = 0.6 = 60%

• Backlink frequency:

f15
f1

= 188
651 = 0.29 = 29%

The fourteenth rank of the web development frequency list is at 60% of the first rank. The
fourteenth rank of the backlink frequency list is at 29% of the first rank. The percentage
shows, that the frequencies of the web-development based frequency list are considerably
closer to each other. The values itself are also very small. The conclusion is, that the fre-
quency of the list is less significant for us because small changes within the values cause
great change in ranks. That is why a framework is not mandatory on the first rank of the
web development based frequency list if it is on the first rank of the backlink frequency list.

There is also an expectable growth in frequency of the web-development based list if we
raise the recursion depth of the corresponding algorithm. At some point, the collected set
of pages is mostly equal to the complete page set of Wikipedia. The only pages not in that
list are those, which do not refer to or are not refered by other pages within Wikipedia.

www.manaraa.com

CHAPTER 2. POPULAR WEB-APPLICATION FRAMEWORKS 27

Table 2.8: Top 10 backlink frequency compared to web development based fre-
quency

Backlink frequency Web development based frequency
Framework name Frequency Position Frequency

1 Microsoft Silverlight 651 15 12
2 ASP.NET 545 1 20
3 Google Web Toolkit 524 1 20
4 Ruby on Rails 401 5 15
5 Apache Struts 328 5 15
6 Pyjamas 263 4 16
7 Apache Wicket 258 7 13
8 Apache Tapestry 247 7 13
9 Spring Framework 221 15 12

10 ASP.NET Dynamic Data 215 7 13

Our results lead to the following idea: The high ranked web-application frameworks of
the backlink frequency-list are picked up and compared to the web development based
frequency-list. If the selected framework has its place in the web-development related list,
the framework is considered as important. Since we are not able to implement every listed
framework, we selected the following seven:

Table 2.9: Selected frameworks

Framework name Backlink rank Web development rank
Microsoft Silverlight 1 15
Google Web Toolkit 3 1

Apache Struts 5 5
Pyjamas 6 4

JavaServer Faces 13 15
Zend Framework 16 41

JBoss Seam 37 15

Silverlight, Google Web Toolkit, Apache Struts and Pyjamas are chosen because they are
top 10 frameworks. JavaServer Faces is chosen because the framework is used for many
other frameworks like Spring, JBoss Seam or Apache Struts as a basic view-controller
technology. Zend is one of the two highest rankend PHP frameworks. And JBoss Seam is
a good example for an application server related framework.

2.5 Threats to validity
We use Wikipedia for the identification of useful web-programming technologies. Since
it is involved in many parts of the technology-identification process, we have to discuss

www.manaraa.com

CHAPTER 2. POPULAR WEB-APPLICATION FRAMEWORKS 28

its trustworthyness. The term ”web-application framework” or ”web framework” is very
common in scientific literature. It is described as a reliable concept of technology for rapid
web-application development[8]. The concept is subject to scientific comparisons [31, 6,
37] as well as it is an important background for new development approaches [21, 5]. It is
also a well definable (see Sec. 2.1.1) term. The conclusion is, that Wikipedia leads to a
research subject, which is useful and well known.

Nevertheless, it is difficult to guarantee, that every technology page in Wikipedia related
to ”web development” has a type or is categorized in a suitable manner. In fact, there are
even examples for web-application frameworks, which are undercategorized14 or overcat-
egorized15. Both issues complicate the assignment of a technology to its main categories,
especially when the only applied category is weak defined. The same problem occurs with
the type contained in the infobox of software technologies. The threat applies to both
processes, is it the research subject identification or the web-application framework iden-
tification.

We also do not claim, that every existing high frequently used web-application frame-
work is documented in Wikipedia. Our process of identification is just an instrument to
simplify the search for suitable web-application frameworks. Other interesting new web-
programming technologies like Web storage [34] or IndexedDB [36] are also not included
in our framework implementations. Hence, our approach will never highlight all useful
concepts and technologies.

2.5.1 Tools
The tools we have used for Wikipedia-page analysis are mostly selfmade. During the
development, we faced several problems indentifiing categories and types:

• Different links in Wikipedia redirect to the same category page.

• There are different capitalizations for same category names and different uses of
hyphens.

• Types in the infobox are seperated by either comma or by HTML tag (”< br >”).

• Types are sometimes links to other Wikipedia pages, sometimes normal text and
sometimes marked with citation links.

The list of problems is verified with the assistance of samples. We randomly chose items
out of the web-development related web-pages and examine their content. The problems
listed above are handled by our scripts.

2.5.2 Implementations
Every web-application framework we have included in the 101companies project is addi-
tionally verified by using the official pages and documentations. We used tutorials found
in the internet to get familiar with the specific technology. A major part of the tutorials
does not include every aspect of the described technology. One reason is technological
evolution. JSF, for example, is historically connected to JSP, but today the JSP technology

14http://en.wikipedia.org/wiki/Oracle_Application_Express
15http://en.wikipedia.org/wiki/Wavemaker

http://en.wikipedia.org/wiki/Oracle_Application_Express
http://en.wikipedia.org/wiki/Wavemaker

www.manaraa.com

CHAPTER 2. POPULAR WEB-APPLICATION FRAMEWORKS 29

has been replaced by Facelets [30]. Another reason is, that JSF also covers a very broad list
of features like Ajax support or different scopes of Java Beans. It would overwhelm the de-
veloper to put all the possibilities of a web-application framework into a tutorial dedicated
to the basics.

www.manaraa.com

Chapter 3

Related work

3.1 Taxonomies and classifications
There are some reasonable alternatives to gain taxonomies and classifications of web-
programming technologies. An approach is to survey web-technologies covering different
factors of web programming. The factors include global distribution [8] of the web itself,
interactivity of a web application and at last cultural and social environment concerning
users and developers. Each factor leads to different objectives like quality attributes, ar-
chitectural styles or user-interface design. Web-programming technologies can be clas-
sified and compared by using these objectives. Since web programming is a huge field
of countless technologies and concepts, the ”Survey of Technologies for Web Application
Development”, written by Barry Doyle and Cristina Videira Lopez, concludes, that there
is still a lack of a solid domain model for web programming. Our approach is to priorize
web-programming technologies in order to get an overview of the most used and most im-
portant components related to the domain.

Many approaches compare and classify web-application frameworks. The diploma the-
sis of Andreas Wende, ”Klassifikation und Bewertung von Frameworks für die Entwick-
lung von Web-Anwendungen” [37] describes different basic concepts for web-application
frameworks to get a strong classification system. The system introduces criteria such as ar-
chitecture, application control, user-interface components, interface generation, data bind-
ing and data exchange, dialog control, validation and session management. The approach
illustrates the classification of the frameworks using implementations. We flip that ap-
proach and use implementations to get classifications for web-programming technologies.

One of the most common languages used in the web-programming domain is Java. Hence,
there are many web-application frameworks based on that language. The ”Taxonomy for
Java Wep-application frameworks” [31], written by Tony C. Shan and Winnie W. Hua de-
fines five schools for Java EE based web-application frameworks. Each Java framework
is related to a category like request-based, component-based, hybrid, meta and RIA-based.
The schools describe the communication characteristics of each framework in particular.
For example, a request-based framework like Apache Struts communicates directly via
controllers and actions while a component-based framework like JSF encapsulates the re-
quest handling into reusable components.

30

www.manaraa.com

CHAPTER 3. RELATED WORK 31

Another example of a web-application framework taxonomy related to Java is the thesis of
Ian F. Darwin about ”Java Web MVC Frameworks: Background, Taxonomy, and Exam-
ples” [6]. It uses the components of MVC architecture for classification: model, view and
controller. Each regarded framework can be assigned to one or more of these components.

All the approaches illustrate, that there are several classification possibilities about web-
programming technologies, web-application frameworks in particular. We want to merge
the approaches with the help of the 101companies project. Our collected web-application
frameworks lead to different languages, architectural characteristics, communication styles,
interface-generation methods and also to many different web-programming technologies
like libraries, APIs and other frameworks. The approaches also illustrate, that our focus on
web-application frameworks is reasonable.

3.2 Building the taxonomy
Building a taxonomy is a challenging process. The major task is to identify reasonable ob-
jects and characteristics for the taxonomy. The approach of Robert C. Nickerson, ”Taxon-
omy development in information systems: Developing a taxonomy of mobile applications”
[25], illustrates a defined method for generating taxonomies. The method is build up on a
cyclic process divided into three iterations. Objects are empirically identified and distin-
guished in the first iteration. The result is extended by new characteristics and dimensions
in the second iteration. Finally, missing objects are created to complete the taxonomy and
close possible gaps.

Our approach describes the empirical identification of web-programming technologies and
their concepts. Hence, it is highly related to the first iteration of the process. The result
is a set of technologies and concepts building the first taxonomy. Each concept leads to
further objects and classifications. A good example is client-server communication. Some
of our first implementations illustrate Ajax as a concept for data exchange between client
and server. We used a pull-based approach, but there is also a push-based approach called
Reverse-Ajax or Comet [2]. In addition, there are interesting conceptual alternatives for
data exchange like REST and SOAP [27]. Last but not least, Ajax leads to new architec-
tural patterns, for example SPIAR [20]. All the new concepts, technologies and architec-
tures build up new classifications and dimensions for our taxonomy, although we do not
have implementations for each of the categories. Searching for alternative concepts and
technologies is related to the second iteration of the taxonomy-building process.

Another approach for creating taxonomies is to use a previously developed taxonomy as
source. Such sources can be verified, changed and extended. As we have seen, Wikipedia
offers a huge amount of classifications for many domains and, as follows, provides a good
initial point for searching such sources. For example, there is an approach to get large scale
taxonomies by using all categories of Wikipedia named ”Taxonomy induction based on a
collaboratively built knowledge repository” by Simone Ponzetto and Michael Strube [28].
It considers the category system as a thematically organized thesaurus. Since Wikipedia
includes many software categories1, the Wikipedia thesaurus helps us to gain access to the
web-programming domain.

1http://en.wikipedia.org/wiki/List_of_software_categories

http://en.wikipedia.org/wiki/List_of_software_categories

www.manaraa.com

CHAPTER 3. RELATED WORK 32

3.3 Web-application frameworks
There are also other more exotic but interesting approaches for web-application frame-
works. Flapjax [21] and Links [5] are language-framework systems directly designed
to create web-applictions. While Flapjax is an event based programming language for
generating JavaScript-Ajax web appilcations, Links simplifies three-tier architecture based
web-applications by using only one language for every tier. Both approaches illustrate rea-
sonable architectural and structural alternatives for web programming and therefore should
be included into the 101companies system.

3.4 Architecture
Since we have used the model view controller (MVC) pattern in many implementations, it
is interesting to take a deeper look into the concept. MVC is one of the most commonly
used architectures in web development, but its basics are related to regular programming.
The following references help to understand the pattern and its historical development.

Trygve Reenskaug invented MVC in 1979. His first description of the style showed up in a
Xerox PARC technical node [32] related to the work of Reenskaug with the object-oriented
programming language Smalltalk. Originally, the name was formed by four terms: thing,
model, view and controller. The thing describes the underlying problem, which is solved
by the use of the MVC pattern.

Steve Burbeck wrote a revision in the years 1987 and 1992 with the title ”Applications
Programming in Smalltalk-80(TM): How to use Model-View-Controller (MVC)” [3]. It is
also based on Smalltalk. The architecture is designed to support the development of large
scaled, interactive applications with a possibly huge data set in the background. These
characteristics fit well to web-applications and applicable frameworks. Espacially web-
application frameworks are dedicated to develop such large scale applications with the
additional requirement, that the application is web based.

www.manaraa.com

Chapter 4

101companies features

4.1 Features of the 101companies project
Before we want to present the implementation documentations, it is necessary to talk about
the features and the feature coverage of each implementation. The 101companies feature
model [15] offers defined requirements for the implementations. It is divided into func-
tional, non-functional and user-interface requirements. The mandatory functional require-
ments specified in the category 101minimum are company, cut and total. These three
features provide the basic data structure and basic functionalities for each implementation.
Since the main character of web-applications is a user interface presentable by the browser,
the web UI is also mandatory for web-programming. The feature is accompanied by the
feature navigation. Web applications often fulfil other interesting requirements including
client-server communication, data persistence or access control. The following table illus-
trates the feature coverage of the implementations included in the thesis.

33

http://101companies.org/index.php/Category:101minimum
http://101companies.org/index.php/101feature:Company
http://101companies.org/index.php/101feature:Cut
http://101companies.org/index.php/101feature:Company
http://101companies.org/index.php/Category:101implementation
http://101companies.org/index.php/101feature:Web UI
http://101companies.org/index.php/101feature:Navigation
http://101companies.org/index.php/101feature:Client-server
http://101companies.org/index.php/101feature:Persistence
http://101companies.org/index.php/101feature:Access_control

www.manaraa.com

CHAPTER 4. 101COMPANIES FEATURES 34

Table 4.1: Feature coverage of the implementations

ex
tr

a
m

in
im

um
qu

al
ity

ui

Depth

Export

Import

Logging

Mentoring

Precedence

Company

Cut

Total

Access Control

Client-server

Code generation

Data mapping

Persistence

Reliability

Scalability

Attribute editing

Intelligent UI

Localization

Navigation

Structural editing

Touch control

Undo/Redo

Voice control

Web UI

ht
m

l5
lo

ca
l

•
•
•

•
•

•
ht

m
l5

X
M

L
H

ttp
R

eq
ue

st
•
•
•

•
•

•
ht

m
l5

in
de

xe
dD

at
ab

as
e

•
•
•

•
•

ht
m

l5
aj

ax
•
•
•

•
•

•
•

ht
m

l5
tr

ee
•
•
•
•

•
•

•
•

•
•

js
f

•
•
•

•
•

•
•

•
gw

tT
re

e
•
•
•
•

•
•

•
•

•
•

•
py

ja
m

as
•
•
•

•
•

•
•

ze
nd

•
•
•

•
•

•
•

•
se

am
•
•
•
•
•

•
•

•
st

ru
ts

A
nn

ot
at

io
n

•
•
•

•
•

•
si

lv
er

lig
ht

•
•
•

•
•

•

http://101companies.org/index.php/Category:101extra
http://101companies.org/index.php/Category:101minimum
http://101companies.org/index.php/Category:101quality
http://101companies.org/index.php/Category:101ui
http://101companies.org/index.php/101feature:Depth
http://101companies.org/index.php/101feature:Export
http://101companies.org/index.php/101feature:Import
http://101companies.org/index.php/101feature:Logging
http://101companies.org/index.php/101feature:Mentoring
http://101companies.org/index.php/101feature:Precedence
http://101companies.org/index.php/101feature:Company
http://101companies.org/index.php/101feature:Cut
http://101companies.org/index.php/101feature:Total
http://101companies.org/index.php/101feature:Access Control
http://101companies.org/index.php/101feature:Client-server
http://101companies.org/index.php/101feature:Code generation
http://101companies.org/index.php/101feature:Data mapping
http://101companies.org/index.php/101feature:Persistence
http://101companies.org/index.php/101feature:Reliability
http://101companies.org/index.php/101feature:Scalability
http://101companies.org/index.php/101feature:Attribute editing
http://101companies.org/index.php/101feature:Intelligent UI
http://101companies.org/index.php/101feature:Localization
http://101companies.org/index.php/101feature:Navigation
http://101companies.org/index.php/101feature:Structural editing
http://101companies.org/index.php/101feature:Touch control
http://101companies.org/index.php/101feature:Undo/Redo
http://101companies.org/index.php/101feature:Voice control
http://101companies.org/index.php/101feature:Web UI

www.manaraa.com

Chapter 5

Implementations

5.1 101implementation html5local

5.1.1 Intent
Web programming based on the HTML5 ecosystem with local Web storage

5.1.2 Languages
• HTML5

• JavaScript

• JSON

5.1.3 Technologies
• Web storage

• Web browser

5.1.4 Features
• Company

• Cut

• Total

• Navigation

• Attribute editing

• Web UI

35

http://101companies.org/index.php/101implementation:html5local
http://101companies.org/index.php/Web programming
http://101companies.org/index.php/Language:HTML5
http://101companies.org/index.php/Language:HTML5
http://101companies.org/index.php/Language:JavaScript
http://101companies.org/index.php/Language:JSON
http://101companies.org/index.php/Category:Web browser
http://101companies.org/index.php/101feature:Company
http://101companies.org/index.php/101feature:Cut
http://101companies.org/index.php/101feature:Total
http://101companies.org/index.php/101feature:Navigation
http://101companies.org/index.php/101feature:Attribute editing
http://101companies.org/index.php/101feature:Web UI

www.manaraa.com

CHAPTER 5. IMPLEMENTATIONS 36

5.1.5 Motivation
This implementation illustrates the use of client side data storage within a web applica-
tion. While most other web applications only store the requested data for the view in the
web browsers’ cache, the HTML5 integrated JavaScript API for Web storage offers the
possibility to permanently store more complex data as key-value pairs on the client-side.
While this implementation offers session independent storage, there is a corresponding
implementation 101implementation html5session providing session storage.

5.1.6 Illustration
The illustration section is devided into two parts. The first section shows the method of
data storage, the second section shows the implementation of the Total. Most of the web
application is written in JavaScript.

Web storage

The Web storage API provides the localStorage and the sessionStorage ob-
jects. This application uses localStorage, at which the use of sessionStorage in
101implementation html5session is completely the same. We initialize our own variable
storageObject in order to keep the possibility for a simple exchange of the storage
principe:

1 var storageObject = localStorage;

The value of the key-value pairs provided by web storage have to be primitive data types
or a string. Since JavaScript provides a great JSON support, we store the company data
as JSON encoded string within the web storage. But first we have to create the company
objects. Since JavaScript does not provide classes, there is a possibility to emulate classes
with functions. The example shows one of these emulated classes for the company:

Listing 5.1: company.js
1 function Company(id, name) {
2 this.id = id;
3 this.name = name;
4 this.departments = new Array();
5 }

After providing the functions for each company, department and employee, we are now
able to instantiate the company structure:

Listing 5.2: company.js
1 function loadData(reset) {
2 // If the company does not exist, it must be created

locally.
3 if (storageObject.company == null || reset == true)

{
4 // create company ...
5 var company = new Company(0, "Meganalysis");

http://101companies.org/index.php/Category:Client
http://101companies.org/index.php/Category:Web application
http://101companies.org/index.php/Category:Web application
http://101companies.org/index.php/Category:Web browser
http://101companies.org/index.php/Language:HTML5
http://101companies.org/index.php/Language:JavaScript
http://101companies.org/index.php/Category:API
http://101companies.org/index.php/Category:Client
http://101companies.org/index.php/101implementation:html5session
http://101companies.org/index.php/101feature:Total
http://101companies.org/index.php/Category:Web application
http://101companies.org/index.php/Category:Web application
http://101companies.org/index.php/Language:JavaScript
http://101companies.org/index.php/Category:API
http://101companies.org/index.php/101implementation:html5session
http://101companies.org/index.php/Language:JavaScript
http://101companies.org/index.php/Language:JSON
http://101companies.org/index.php/101feature:Company
https://github.com/101companies/101implementations/blob/master/html5local/company.js
https://github.com/101companies/101implementations/blob/master/html5local/company.js

www.manaraa.com

CHAPTER 5. IMPLEMENTATIONS 37

6

7 ...
8

9 // save company
10 storageObject.setItem(’company’, JSON.stringify(

company));
11

12 }
13 return JSON.parse(storageObject.getItem(’company’));
14 }

The setItem(’company’, JSON.stringify(company)) call encodes the com-
pany as JSON string and stores it to a variable company within our storageObject.
If this company variable already exists, the method simply returns the stored company.
To get the company string, the getItem(’company’) method has to be invoked on the
storageObject.

Feature implementation

The data-structure is a tree, which can be traversed to cut salaries or determine the total of
the whole company or individual departments. The following example shows the method
for totalling companies with the help of totalling departments:

Listing 5.3: companyModel.js
1 // This method calculates the total for a company.
2 function totalCompany(company) {
3 var total = 0;
4 var len = company.departments.length;
5 for (var i = 0; i < len; i++) {
6 // To get the total for the company, this method

calls the total method for departments and
adds the results.

7 total += totalDepartment(company.departments[i])
;

8 }
9 return total;

10 }
11

12 // This method calculates the total value for
departments.

13 function totalDepartment(department) {
14 var total = 0;
15 var len = department.subdepartments.length;
16 // Here, the total values of all subdepartments are

added recursively.
17 for (var i = 0; i < len; i++) {
18 total += totalDepartment(department.

subdepartments[i]);
19 }

http://101companies.org/index.php/Method
https://github.com/101companies/101implementations/blob/master/html5local/companyModel.js

www.manaraa.com

CHAPTER 5. IMPLEMENTATIONS 38

20 var lenEmp = department.employees.length;
21 // Here, the salaries of all contained employees are

added.
22 for (var i = 0; i < lenEmp; i++) {
23 total += department.employees[i].salary;
24 }
25 return total;
26 }

The function totalCompany uses the function totalDepartment, to get the values
of its subdepartments. This total values are calculated recursively.

GUI generation

The HTML code for the GUI is completely generated with JavaScript. The following code
generates the name textfield for the company view:

Listing 5.4: companyView.js
1 ...
2

3 // Create a form for the company view.
4 var content = "<form name=\"company\">";
5

6 // Create a table within the company view.
7 content += "<table border=0>";
8

9 // Create a table row with the name textfield and a save
button.

10 content += "<tr><td align=\"right\">Name: </td>";
11 content += "<td><input type=\"text\""
12 + " class=\"text\" name=\"name\" value=’"
13 + model.headline
14 + "’>";
15 content += " <input type=\"button\" name=\"save\""
16 + " class=\"button\" value=\"save\""
17 + " onclick=\"controller.changeName(this.form.name.

value)\">"
18 + "</td></tr>";
19 ...
20

21 // Close table and form tags.
22 content += "</table>";
23 content += "</form>";
24

25 // Move the content to the ’content’ division of the
company.html file.

26 document.querySelector(’#content’).innerHTML = content;
27

28 ...

http://101companies.org/index.php/GUI
http://101companies.org/index.php/Language:HTML
http://101companies.org/index.php/GUI
https://github.com/101companies/101implementations/blob/master/html5local/companyView.js

www.manaraa.com

CHAPTER 5. IMPLEMENTATIONS 39

The first step is to create an HTML form (<form name="company">) including the
table as a grid for proper alignment of the GUI components. The table row starting with the
<tr> tag contains the name label, the name textfield and the save button. The textfield
(the first <input ... />) is initialized with the value model.headline, which
contains the name of the company. The save button (second <input ... />) in-
vokes the method changeName, where the this.form.name.value parameter con-
tains the current content of the name textfield. Finally, the last allocation (... =
content;) moves the generated HTML code to the content division of the document
company.html.

5.1.7 Architecture
All files of the application are contained in one folder:

• There is an initial HTML page for each company entity of the company: company.html,
department.html and employee.html. The content is generated by JavaScript. Both,
the HTML pages and companyView.js, departmentView.js and employeeView.js
form the view of this MVC based implementation.

• The controller (the files companyController.js, departmentController.js and employ-
eeController.js) passes the data to the model and refreshes the GUI. It is very lightweight,
based on the character and limited use of the features and on the pure client side imple-
mentation.

• The model (companyModel.js, departmentModel.js, employeeModel.js) handles
the access to the Web storage.

• The company is initialized in company.js.

5.1.8 Usage
• Download the complete folder content.

• Open the local index.html with your web browser.

https://github.com/101companies/101implementations/blob/master/html5local/company.html?view=markup
http://101companies.org/index.php/Language:HTML
http://101companies.org/index.php/101feature:Company
https://github.com/101companies/101implementations/blob/master/html5local/company.html?view=markup
https://github.com/101companies/101implementations/blob/master/html5local/department.html?view=markup
https://github.com/101companies/101implementations/blob/master/html5local/employee.html?view=markup
http://101companies.org/index.php/Language:JavaScript
https://github.com/101companies/101implementations/blob/master/html5local/companyView.js?view=markup
https://github.com/101companies/101implementations/blob/master/html5local/departmentView.js?view=markup
https://github.com/101companies/101implementations/blob/master/html5local/employeeView.js?view=markup
https://github.com/101companies/101implementations/blob/master/html5local/companyController.js?view=markup
https://github.com/101companies/101implementations/blob/master/html5local/departmentController.js?view=markup
https://github.com/101companies/101implementations/blob/master/html5local/employeeController.js?view=markup
https://github.com/101companies/101implementations/blob/master/html5local/employeeController.js?view=markup
http://101companies.org/index.php/GUI
http://101companies.org/index.php/Category:101feature
http://101companies.org/index.php/Category:Client
https://github.com/101companies/101implementations/blob/master/html5local/companyModel.js?view=markup
https://github.com/101companies/101implementations/blob/master/html5local/departmentModel.js?view=markup
https://github.com/101companies/101implementations/blob/master/html5local/employeeModel.js?view=markup
https://github.com/101companies/101implementations/blob/master/html5local/company.js?view=markup
https://github.com/101companies/101implementations/blob/master/html5local/index.html?view=markup
http://101companies.org/index.php/Category:Web browser

www.manaraa.com

CHAPTER 5. IMPLEMENTATIONS 40

5.2 101implementation html5indexedDatabase

5.2.1 Intent
Web programming with indexedDB based on the HTML5 ecosystem

5.2.2 Languages
• HTML5

• JavaScript

5.2.3 Technologies
• IndexedDB

• Web browser

5.2.4 Features
• Company

• Cut

• Total

• Navigation

• Web UI

5.2.5 Motivation
The IndexedDB API is a good alternative solution for persisting data on the client side of
a web application. While the Web storage API uses key-value pairs, the IndexedDB API
uses indexed tables represented by a B-tree structure for data storage. This is an applicable
approach for larger amounts of data. Since the synchronous API is not fully implemented
yet, we used the asynchronous API.

5.2.6 Illustration
The communication between the application and the indexedDB is transaction based. But
before using any transactions to gain access to the data we have to create the database and
the data within. This section will start with the database initialization and data generation
and will finish with illustrating a transaction based cut request for the whole company.
Please visit 101implementation html5local for the aspect of GUI generation.

http://101companies.org/index.php/101implementation:html5indexedDatabase
http://101companies.org/index.php/Web programming
http://101companies.org/index.php/Language:HTML5
http://101companies.org/index.php/Language:HTML5
http://101companies.org/index.php/Language:JavaScript
http://101companies.org/index.php/Category:Web browser
http://101companies.org/index.php/101feature:Company
http://101companies.org/index.php/101feature:Cut
http://101companies.org/index.php/101feature:Total
http://101companies.org/index.php/101feature:Navigation
http://101companies.org/index.php/101feature:Web UI
http://101companies.org/index.php/Category:API
http://101companies.org/index.php/Category:Client
http://101companies.org/index.php/Category:Web application
http://101companies.org/index.php/Synchronous communication
http://101companies.org/index.php/Asynchronous communication
http://101companies.org/index.php/101feature:Cut
http://101companies.org/index.php/101implementation:html5local
http://101companies.org/index.php/GUI

www.manaraa.com

CHAPTER 5. IMPLEMENTATIONS 41

Database initialization

The implementation contains an initial open function for the database creation. If the
database initialization is successful, the function also generates tables and data.

Listing 5.5: company.js
1 companies.indexedDB.open = function(f) {
2

3 // opens a connection to the 101Companies database
4 // - if it does not exist, create new database
5 // - if it exists, use database
6 var request = indexedDB.open("101Companies");
7

8 // the database connection is successfully
established

9 request.onsuccess = function(e) {
10

11 ...
12

13 };
14

15 // the database connection is unavailable
16 request.onfailure = companies.indexedDB.onerror;
17 }

The indexedDB.open("101Companies"); function opens the connection to an
existing database named 101Companies or creates a new database with this name, if it does
not exist. It returns a request status object, as well. This object allows an asynchronous
callback for the two possible results of the open function: success or failure. On failure,
the companies.indexedDB.onerror function returns some user notification. On
success, we are able to continue with the table generation:

Listing 5.6: company.js
1 ...
2

3 // creates a data table for Companies
4 var companiesStore = db.createObjectStore("Company", {

keyPath: "id"});
5

6 ...

This simple call creates a table named Company with the key id. This table is able to store
arrays with any fields, except that the field called id is used as the key for the b-tree of the
table. It returns the table object for further use, as well.

Data generation

Data manipulations are handled with transactions. This is why we have to create transac-
tions to generate the table contents. Each data manipulation consists of three steps:

https://github.com/101companies/101implementations/blob/master/html5indexedDatabase/company.js
http://101companies.org/index.php/Asynchronous communication
https://github.com/101companies/101implementations/blob/master/html5indexedDatabase/company.js

www.manaraa.com

CHAPTER 5. IMPLEMENTATIONS 42

• create transaction

• retrieve table object

• put data into the table as an array

Listing 5.7: company.js
1 companies.indexedDB.addData = function() {
2

3 // get database
4 var db = companies.indexedDB.db;
5 // create transaction
6 var transComp = db.transaction(["Company"],

IDBTransaction.READ_WRITE, 0);
7 // get company table
8 var compStore = transComp.objectStore("Company");
9

10 ...
11

12 // create data object with id = 0
13 var compData = {
14 "company": "Meganalysis",
15 "id": 0
16 };
17

18 ...
19

20 // store data object
21 compStore.put(compData);
22

23 ...
24

25 };

We first retrieve the database using the field companies.indexedDB.db;. After that,
a new transaction to the Company table with READ WRITE access has to be created. The
table is retrieved with transComp.objectStore("Company");. We now are able
to read and write data from and into the table.

Feature implementation

The manipulation of data corresponds to its creation except that we need a cursor to get the
required arrays out of the b-tree. In case of cutting the company we need all employees:

Listing 5.8: companyModel.js
1 companies.indexedDB.cut = function() {
2 // get database
3 var db = companies.indexedDB.db;
4

https://github.com/101companies/101implementations/blob/master/html5indexedDatabase/company.js
https://github.com/101companies/101implementations/blob/master/html5indexedDatabase/companyModel.js

www.manaraa.com

CHAPTER 5. IMPLEMENTATIONS 43

5 // create transaction
6 var transEmp = db.transaction(["Employee"],

IDBTransaction.READ_WRITE, 0);
7 // get employee table
8 var empStore = transEmp.objectStore("Employee");
9

10 // Key range: Get every single employee in the store
11 var keyRange = IDBKeyRange.lowerBound(0);
12 // create Cursor with key range
13 var cursorRequest = empStore.openCursor(keyRange);
14

15 // cursor runs through the result-set
16 cursorRequest.onsuccess = function(e) {
17 var result = e.target.result;
18 if(!!result == false)
19 return;
20 // cut the salary
21 result.value.salary = result.value.salary / 2;
22 // store the employee
23 empStore.put(result.value);
24 // next employee ...
25 result.continue();
26 };
27

28 // error handling
29 cursorRequest.onerror = companies.indexedDB.onerror;
30 }

The IDBKeyRange.lowerBound(0); means, that all keys are greater than 0. That
is, in case of employees, every element within the employee b-tree. If the cursor is success-
fully created (var cursorRequest = empStore.openCursor(keyRange);),
we are able to run through the results within the onsuccess function. The function
e.target.result delivers the next element. If it exists, we cut the salary and restore it
into the database. After that, we continue with the next element at result.continue();.

5.2.7 Architecture
The architecture is equal to 101implementation html5local, except that the model organizes
the connection to the indexed database.

5.2.8 Usage
• Check out all files from the repository.

• Open the index.html with your Web browser. This application currently does work only
with google chrome.

http://101companies.org/index.php/101implementation:html5local
https://github.com/101companies/101implementations/blob/master/html5indexedDatabase/index.html?view=markup
http://101companies.org/index.php/Category:Web browser
http://101companies.org/index.php/Technology:Google Chrome

www.manaraa.com

CHAPTER 5. IMPLEMENTATIONS 44

5.3 101implementation html5XMLHttpRequest

5.3.1 Intent
Basic use of XMLHttpRequest with HTML5

5.3.2 Languages
• HTML5

• JavaScript

• PHP

• XML

5.3.3 Technologies
• DOM

• XMLHttpRequest

• Web browser

5.3.4 Features
• Company

• Cut

• Total

• Client-server

• Navigation

• Web UI

5.3.5 Motivation
This implementation provides simple server side XML based data storage. Therefor, it
introduces XMLHttpRequest in a very simple way of use. This helps to understand the
asynchronous mechanisms of the XMLHttpRequest API. In order to keep it simple, there
is no greater Ajax support in this implementation. If you want to see an Ajax based imple-
mentation, please visit 101implementation html5ajax.

http://101companies.org/index.php/101implementation:html5XMLHttpRequest
http://101companies.org/index.php/Language:HTML5
http://101companies.org/index.php/Language:HTML5
http://101companies.org/index.php/Language:JavaScript
http://101companies.org/index.php/Language:PHP
http://101companies.org/index.php/Language:XML
http://101companies.org/index.php/Technology:DOM
http://101companies.org/index.php/Category:Web browser
http://101companies.org/index.php/101feature:Company
http://101companies.org/index.php/101feature:Cut
http://101companies.org/index.php/101feature:Total
http://101companies.org/index.php/101feature:Client-server
http://101companies.org/index.php/101feature:Navigation
http://101companies.org/index.php/101feature:Web UI
http://101companies.org/index.php/Category:Server
http://101companies.org/index.php/Language:XML
http://101companies.org/index.php/Asynchronous communication
http://101companies.org/index.php/Category:API
http://101companies.org/index.php/101implementation:html5ajax

www.manaraa.com

CHAPTER 5. IMPLEMENTATIONS 45

5.3.6 Illustration
This section illustrates, how the data moves from an XML file to a DOM based Web ap-
plication and back. The first section shows the structure of the initial XML file, the second
part shows the load mechanism with XMLHttpRequest, the third part shows some data
manipulation according to the Cut and the last part shows the save mechanism with XML-
HttpRequest. Please visit 101implementation html5local for the aspect of GUI generation.

XML document structure

The company.xml file represents the company. It models the company structure in typical
XML manner: Each entity is represented by a node, at which its parameters or appended
entities are represented by subnodes. Each department and employee contains an aditional
parameter node for the id.

Listing 5.9: company.xml
1 <Company>
2 <name>Meganalysis</name>
3 <departments>
4

5 ...
6

7 </departments>
8 </company>

This example shows the company node with the two subnodes name and departments.
The departments node contains all direct subdepartments of the company as a single
subnode.

Load company

We are able to access this company.xml file by using a simple XMLHttpRequest. The
request itself needs three informations:

• The request method is GET, because we only want to load the file,

• the filename is company.xml,

• and we want to perform an asynchronous request, announced by the last boolean param-
eter true.

Listing 5.10: company.js
1 company.loadData = function() {
2

3 var xhr = new XMLHttpRequest();
4

5 // This statement creates a new request with the
parameters:

6 // - "GET": only load

http://101companies.org/index.php/Language:XML
http://101companies.org/index.php/Technology:DOM
http://101companies.org/index.php/Category:Web application
http://101companies.org/index.php/Category:Web application
http://101companies.org/index.php/101feature:Cut
http://101companies.org/index.php/101implementation:html5local
http://101companies.org/index.php/GUI
http://101companies.org/index.php/Language:XML
https://github.com/101companies/101implementations/blob/master/html5XMLHttpRequest/company.xml?view=markup
https://github.com/101companies/101implementations/blob/master/html5XMLHttpRequest/company.xml
https://github.com/101companies/101implementations/blob/master/html5XMLHttpRequest/company.xml?view=markup
http://101companies.org/index.php/Asynchronous communication
https://github.com/101companies/101implementations/blob/master/html5XMLHttpRequest/company.js

www.manaraa.com

CHAPTER 5. IMPLEMENTATIONS 46

7 // - "company.xml": filename of the requested xml
doc

8 // - "true": asynchronous request
9 xhr.open(’GET’, ’company.xml’, true);

10

11 // This method is triggered after the response
reaches the client.

12 xhr.onload = function(e) {
13 if (this.status == 200) {
14 // This line guarantess, that the result has

xml format.
15 company.response = xhr.responseXML;
16 controller.loadInner();
17 }
18 };
19

20 // This call starts the request.
21 xhr.send();
22

23 }

The loadData function first creates a new XMLHttpRequest object. The three necessary
values mentioned before are used as parameters for the open function. The onload
function defines the reaction after finish the file load. Status 200 means, that the file is
successfully transfered to the client. The advantage of XML is, that it is extremely easy to
load with XMLHttpRequest. The xhr.responseXML function returns a complete data
structure for the company traversable with DOM.

Feature implementation

We use the DOM API to retrieve all salary nodes of the company:

Listing 5.11: companyModel.js
1 model.cut = function() {
2 // This call retrieves all salary nodes.
3 var salaryNodes = company.response.documentElement.

getElementsByTagName("Salary");
4

5 // This loop cuts the salary values by two and saves
the value to the specific nodes.

6 for (var i = 0; i < salaryNodes.length; i++) {
7 salaryNodes[i].childNodes[0].nodeValue =

parseFloat(salaryNodes[i].childNodes[0].
nodeValue) / 2;

8 }
9

10 // This function saves the company to the xml file.
11 company.saveData(company.response);

http://101companies.org/index.php/Technology:DOM
https://github.com/101companies/101implementations/blob/master/html5XMLHttpRequest/companyModel.js

www.manaraa.com

CHAPTER 5. IMPLEMENTATIONS 47

12 // The new total value has to be determined after
the cut.

13 model.total();
14 }

The getElementsByTagName("Salary") returns all salary nodes for the company.
The return value is a simple array. The for loop traverses this array and cuts all the salaries.
After cutting the salaries, all new values have to be saved and the new total value has to be
determined. In our example we will save the complete company with the new data into the
company.xml file.

Save company

The save mechanism is as simple as the load mechanism. The difference is, that some
parameters of the open function have to be changed:

• The request method is now POST, because we want to have write access

• and the filename is update.php, refering to the PHP script, which accepts the changed
content for the company.xml.

Listing 5.12: company.js
1 company.saveData = function(data) {
2 var serializer = new XMLSerializer();
3 var xml = serializer.serializeToString(data);
4

5 var xhr = new XMLHttpRequest();
6 xhr.open(’POST’, ’upload.php’, true);
7 xhr.setRequestHeader("X-Requested-With", "

XMLHttpRequest");
8 xhr.setRequestHeader("X-File-Name", "company.xml");
9 xhr.setRequestHeader("Content-Type", "application/

octet-stream");
10 xhr.send(xml);
11 }

There are some additional parameters, which are used to define the following proceeding
on the server sides PHP script. The three elements of the request header show, that the
request is an XMLHttpRequest, that the concerning file has its relative path company.xml
and the content is a stream. The upload.php script handles the stream and saves it as XML
file with the given name:

Listing 5.13: upload.php
1 <?php
2 $uploaddir = "";
3

4 if($_SERVER[’HTTP_X_FILE_NAME’]!="") {
5

6 $nomefile=$_SERVER[’HTTP_X_FILE_NAME’];

https://github.com/101companies/101implementations/blob/master/html5XMLHttpRequest/company.xml?view=markup
http://101companies.org/index.php/Language:PHP
https://github.com/101companies/101implementations/blob/master/html5XMLHttpRequest/company.xml?view=markup
https://github.com/101companies/101implementations/blob/master/html5XMLHttpRequest/company.js
http://101companies.org/index.php/Category:Server
http://101companies.org/index.php/Language:PHP
https://github.com/101companies/101implementations/blob/master/html5XMLHttpRequest/upload.php?view=markup
https://github.com/101companies/101implementations/blob/master/html5XMLHttpRequest/upload.php

www.manaraa.com

CHAPTER 5. IMPLEMENTATIONS 48

7

8 $fh = fopen($uploaddir.$nomefile, ’w’) or die("<
h1 style=’color:red;’>Upload failed</h1>");

9

10 fwrite($fh, $HTTP_RAW_POST_DATA);
11

12 fclose($fh);
13

14 echo "<h1>success uploaded</h1>.\n";
15 }
16 ?>

The first if control structure proofs, that the filename is not empty. After that, the script
opens the file with the given filename and write access. If it is successfully opened, the
stream can be written to the file handled by the function fwrite The parameters for this
function are the opened file ($fh) and the delivered content ($HTTP RAW POST DATA).

5.3.7 Architecture
All necessary files are located in the base folder. The architecture is based on MVC:

• All HTML files in combination with the JavaScript (.js) files with the suffix View repre-
sent the view.

• The controller is implemented within the JavaScript (.js) files with the suffix Controller.

• The model files have the suffix Model.

There is an additional upload.php file, which is necessary to upload new content for the
XML file.

5.3.8 Usage
• Please check out all files in the repository.

• Open the index.html with your web-browser (check HTML5 for the HTML5-support of
your browser).

This HTML5-program does not work over file-protocol when using Chrome. In this case,
you need access over http. To gain access over http, you can use XAMPP, for example, to
create a webserver.

• Download XAMPP from http://www.apachefriends.org/en/xampp.html.

• Install XAMPP.

• Deploy all files to your htdocs-directory (for example: E:/xampp/htdocs/xhr/).

• Start the XAMPP-Control Panel and activate Apache.

• Start your web-browser.

• Call http://localhost/xhr/index.html.

http://101companies.org/index.php/Language:HTML
http://101companies.org/index.php/Language:JavaScript
https://github.com/101companies/101implementations/blob/master/html5XMLHttpRequest/upload.php?view=markup
http://101companies.org/index.php/Language:XML
http://101companies.org/index.php/Language:HTML5

www.manaraa.com

CHAPTER 5. IMPLEMENTATIONS 49

5.4 101implementation html5ajax

5.4.1 Intent
Web programming based on the HTML5 ecosystem using Ajax style

5.4.2 Languages
• HTML5

• JavaScript

• PHP

• SQL

• JSON

5.4.3 Technologies
• MySQL

• XAMPP

• Apache HTTP Server

• XMLHttpRequest

• Web browser

5.4.4 Features
• Company

• Cut

• Total

• Client-server

• Navigation

• Attribute editing

• Web UI

5.4.5 Motivation
This web application provides an optimized data exchange between the client and the
server. It is achieved by the use of the Ajax principle. Optimized data exchange with
Ajax means, that only necessary parts of the current page are reloaded and only necessary
data are transmitted from the server to the client. This web application uses the XML-
HttpRequest API included in HTML5 and is developed without any supporting JavaScript
framework.

http://101companies.org/index.php/101implementation:html5ajax
http://101companies.org/index.php/Web programming
http://101companies.org/index.php/Language:HTML5
http://101companies.org/index.php/Language:HTML5
http://101companies.org/index.php/Language:JavaScript
http://101companies.org/index.php/Language:PHP
http://101companies.org/index.php/Language:SQL
http://101companies.org/index.php/Language:JSON
http://101companies.org/index.php/Technology:MySQL
http://101companies.org/index.php/Technology:XAMPP
http://101companies.org/index.php/Technology:Apache_HTTP_Server
http://101companies.org/index.php/Category:Web browser
http://101companies.org/index.php/101feature:Company
http://101companies.org/index.php/101feature:Cut
http://101companies.org/index.php/101feature:Total
http://101companies.org/index.php/101feature:Client-server
http://101companies.org/index.php/101feature:Navigation
http://101companies.org/index.php/101feature:Attribute editing
http://101companies.org/index.php/101feature:Web UI
http://101companies.org/index.php/Category:Web application
http://101companies.org/index.php/Category:Client
http://101companies.org/index.php/Category:Server
http://101companies.org/index.php/Category:API
http://101companies.org/index.php/Language:HTML5
http://101companies.org/index.php/Language:JavaScript
http://101companies.org/index.php/Category:Framework

www.manaraa.com

CHAPTER 5. IMPLEMENTATIONS 50

5.4.6 Illustration
This implementation is MVC and client-server based. In order to create a reasonable illus-
tration of the different layers of this application, this section is geared to this layers. The
view, controller and some parts of the model are located on the client side.

Client

The view is mainly HTML based, even though there are JavaScript parts. The following
example shows a table row in the HTML5 company.html document, which creates the
textfield for the companies’ total output and the cut button:

Listing 5.14: company.html
1 <table>
2

3 ...
4

5 <tr>
6 <td>Total:</td>
7 <td><input type="text" name="total" class="text"

readonly="readonly"/></td>
8 <td><input type="button" class="button" value="

cut" onClick="controller.cut()"/></td>
9 </tr>

10

11 ...
12

13 </table>

If the user presses the cut button, the corresponding JavaScript method located in the client
side model companyModel.js is invoked through the controller.js. The initCompany
method, used in cut, initializes an object with all necessary data to identify the company
on the server side:

Listing 5.15: companyModel.js
1 // cut company
2 model.cut = function(strategy) {
3 model.initCompany();
4 model.company.action = "cut";
5

6 model.sendRequest(strategy, model.company);
7 }

The sent request contains a strategy, which defines the reaction after receiving the response.
In case of a non error response the strategy refreshes the total field of the company.
The use of JSON instead of XML for request and response messages has a major advan-
tage: The messages are created in an object oriented style and can easily be transformed
into JSON strings. There is no additional effort for creating and interpreting complex XML
messages. The JSON message for the specific cut request contains the necessary informa-

http://101companies.org/index.php/Client-server architecture
http://101companies.org/index.php/Category:Client
http://101companies.org/index.php/Language:HTML
http://101companies.org/index.php/Language:JavaScript
http://101companies.org/index.php/Language:HTML5
https://github.com/101companies/101implementations/blob/master/html5ajax/client/company.html?view=markup
https://github.com/101companies/101implementations/blob/master/html5ajax/client/company.html
http://101companies.org/index.php/Method
https://github.com/101companies/101implementations/blob/master/html5ajax//client/model/companyModel.js?view=markup
https://github.com/101companies/101implementations/blob/master/html5ajax/client/javascript/controller.js?view=markup
http://101companies.org/index.php/Category:Server
https://github.com/101companies/101implementations/blob/master/html5ajax/client/model/companyModel.js
http://101companies.org/index.php/Language:JSON
http://101companies.org/index.php/Language:XML
http://101companies.org/index.php/OO_programming_paradigm
http://101companies.org/index.php/Language:XML

www.manaraa.com

CHAPTER 5. IMPLEMENTATIONS 51

tion about the action and the entity:

1 {
2 "id":1,
3 "table":"company",
4 "action":"cut"
5 }

The message is received by the server, which cuts the company with the identifier 1.

Server

After receiving the cut request, the server performs the corresponding action within the
PHP script companyServer.php. After that, it returns the new information for the com-
pany to the client:

Listing 5.16: companyServer.php
1 // -- cut company
2 function cut($jsonObject) {
3 $id = $jsonObject->id;
4 $request = "UPDATE employee SET salary = salary / 2

WHERE cid = $id";
5 mysql_query($request);
6

7 return loadCompany($jsonObject);
8 }

The answer is a stringified company object containing all necessary information about the
company (and nothing more):

1 {
2 "name":"meganalysis",
3 "departments":["Research","Development"],
4 "total":199873.5
5 }

This application implements the attribute editing feature. Hence, there is also validation.
The client side validation is performed within the client side part of the model, while the
server side validation is performed within the PHP scripts. If there is a client side input
error, no request will be created and the error is displayed directly. If there is a server side
error, the PHP script responds with an appropriate JSON message.

5.4.7 Architecture
The architecture is based upon the MVC pattern. While the view (example: company.html,
companyView.js) and the controller (controller.js) are parts of the client, the model is part
of the server and the client.

• The view is based on pure HTML (see [this!!client/]) and JavaScript. The corresponding
JavaScript files (see views) are used to fill the fields of the user interface.

http://101companies.org/index.php/Language:PHP
https://github.com/101companies/101implementations/blob/master/html5ajax/server/companyServer.php?view=markup
http://101companies.org/index.php/Category:Client
https://github.com/101companies/101implementations/blob/master/html5ajax/server/companyServer.php
http://101companies.org/index.php/101feature:Company
http://101companies.org/index.php/101feature:Attribute editing
http://101companies.org/index.php/Category:Server
https://github.com/101companies/101implementations/blob/master/html5ajax//client/company.html?view=markup
https://github.com/101companies/101implementations/blob/master/html5ajax//client/javascript/view/companyView.js?view=markup
https://github.com/101companies/101implementations/blob/master/html5ajax//client/javascript/controller.js?view=markup
http://101companies.org/index.php/Category:Client
http://101companies.org/index.php/Category:Server
http://101companies.org/index.php/Language:HTML
http://101companies.org/index.php/Language:JavaScript
https://github.com/101companies/101implementations/blob/master/html5ajax//client/javascript/views?view=markup
http://101companies.org/index.php/Category:User interface

www.manaraa.com

CHAPTER 5. IMPLEMENTATIONS 52

• The model on the server side (see [this!!server/]) is a PHP script and receives the requests
and responds in JSON. The model on the client-side (see model) receives the JSON
message and refreshes its data (example: companyServer.php, companyModel.js).

• All requests and responses via the XMLHttpRequest API are handled by the function
defined in XMLHttpRequest.js.

• The JavaScript based controller (see controller.js) handles the actions invoked by the
user and refreshes the GUI at the client side.

5.4.8 Usage
You need a web and sql server to use this application. In this tutorial both will be taken
care of by XAMPP: http://www.apachefriends.org/en/xampp.html
This tutorial adopts some parts of 101implementation mySql. The company.sql and sam-
pleCompany.sql are modified for this project. They are located in the ”sqlScripts” folder.

• Download and install XAMPP

• Open the ”XAMPP Control Panel” and start ”Apache” and ”MySQL”

• Use the guideline of 101implementation mySql up to ”Populate tables...” with the mod-
ified sql scripts.

Once the database is running, follow the next steps:

• To start the application, you need to download all project files

• Put the files into the htdocs directory of your XAMPP (a new sub-directory in ”htdocs”
is recommended)

• Run index.html

The project is provided as a netbeans project. If you want to change the code, you have to:

• Download (http://netbeans.org/) and install NetBeans

• ”Open project” and select the html5ajax folder

http://101companies.org/index.php/Language:PHP
http://101companies.org/index.php/Language:JSON
http://101companies.org/index.php/Category:Client
https://github.com/101companies/101implementations/blob/master/html5ajax/client/javascript/model?view=markup
https://github.com/101companies/101implementations/blob/master/html5ajax//server/companyServer.php?view=markup
https://github.com/101companies/101implementations/blob/master/html5ajax//client/javascript/requests/companyModel.js?view=markup
http://101companies.org/index.php/Category:API
https://github.com/101companies/101implementations/blob/master/html5ajax/client/javascript/model/XMLHttpRequest.js?view=markup
https://github.com/101companies/101implementations/blob/master/html5ajax/client/javascript/controller.js?view=markup
http://101companies.org/index.php/GUI
http://101companies.org/index.php/101implementation:mySql
http://101companies.org/index.php/101implementation:mySql
http://101companies.org/index.php/Technology:NetBeans

www.manaraa.com

CHAPTER 5. IMPLEMENTATIONS 53

5.5 101implementation html5tree

5.5.1 Intent
Web programming based on the HTML5 ecosystem using Ajax style and a tree view

5.5.2 Languages
• HTML5

• JavaScript

• PHP

• SQL

• JSON

5.5.3 Technologies
• MySQL

• XAMPP

• Apache HTTP Server

• XMLHttpRequest

• jQuery

• Web browser

5.5.4 Features
• Company

• Total

• Cut

• Precedence

• Persistence

• Navigation

• Client-server

• Attribute editing

• Structural editing

• Web UI

http://101companies.org/index.php/101implementation:html5tree
http://101companies.org/index.php/Web programming
http://101companies.org/index.php/Language:HTML5
http://101companies.org/index.php/Language:HTML5
http://101companies.org/index.php/Language:JavaScript
http://101companies.org/index.php/Language:PHP
http://101companies.org/index.php/Language:SQL
http://101companies.org/index.php/Language:JSON
http://101companies.org/index.php/Technology:MySQL
http://101companies.org/index.php/Technology:XAMPP
http://101companies.org/index.php/Technology:Apache_HTTP_Server
http://101companies.org/index.php/Technology:jQuery
http://101companies.org/index.php/Category:Web browser
http://101companies.org/index.php/101feature:Company
http://101companies.org/index.php/101feature:Total
http://101companies.org/index.php/101feature:Cut
http://101companies.org/index.php/101feature:Precedence
http://101companies.org/index.php/101feature:Persistence
http://101companies.org/index.php/101feature:Navigation
http://101companies.org/index.php/101feature:Client-server
http://101companies.org/index.php/101feature:Attribute editing
http://101companies.org/index.php/101feature:Structural editing
http://101companies.org/index.php/101feature:Web UI

www.manaraa.com

CHAPTER 5. IMPLEMENTATIONS 54

5.5.5 Motivation
This web application extends the html5ajax implementation with a tree view, thereby
improving the navigation. This is necessary to guarantee a clear overview while deleting,
moving and creating departments and employees due to structural editing. JavaScript is
very suitable for trees, because it allows client side DOM manipulation. This is necessary
for creating fast, expandable tree structures. We have used the jQuery library to gain proper
DOM manipulation.

5.5.6 Illustration
The first part of this illustration shows, how the tree view is created. The second part
illustrates the deletion of a department as it is part of the structural editing feature.

Tree creation

As shown in 101implementation html5ajax, the data is stored within a MySQL database.
After the client creates the initial request, a server side PHP script called treeServer.php
prepares the data for a JSON response. The initial XMLHttpRequest is rather simple:

Listing 5.17: treeModel.js
1 ...
2

3 treeModel.load = function(strategy, id) {
4 treeModel.initCompany(id);
5 treeModel.company.action = "load";
6

7 requestUnit.sendRequest(strategy, treeModel.url,
treeModel.company);

8 }
9

10 ...

The requestUnit (file: XMLHttpRequest.js) is developed to create generic requests.
The given strategy updates the tree view with the retrieved data.

Server The server side PHP script treeServer.php creates the objects necessary for
the tree. Therefore, it loads the entities from the database with the ids and names, bacause
there is no need for total oder address values within the tree display. The following function
illustrates the initialization of the company:

Listing 5.18: treeServer.php
1 ...
2

3 function perform($jsonObject) {
4 $action = $jsonObject->action;
5

6 switch ($action) {
7 case "load":

http://101companies.org/index.php/Category:Web application
http://101companies.org/index.php/101feature:Navigation
http://101companies.org/index.php/101feature:Structural editing
http://101companies.org/index.php/Language:JavaScript
http://101companies.org/index.php/Category:Client
http://101companies.org/index.php/Technology:DOM
http://101companies.org/index.php/Technology:jQuery
http://101companies.org/index.php/Category:Library
http://101companies.org/index.php/Technology:DOM
http://101companies.org/index.php/101feature:Structural editing
http://101companies.org/index.php/101implementation:html5ajax
http://101companies.org/index.php/Technology:MySQL
http://101companies.org/index.php/Category:Server
http://101companies.org/index.php/Language:PHP
https://github.com/101companies/101implementations/blob/master/html5tree/server/treeServer.php?view=markup
http://101companies.org/index.php/Language:JSON
https://github.com/101companies/101implementations/blob/master/html5tree/client/javascript/model/treeModel.js
https://github.com/101companies/101implementations/blob/master/html5tree/client/javascript/model/XMLHttpRequest.js?view=markup
http://101companies.org/index.php/Language:PHP
https://github.com/101companies/101implementations/blob/master/html5tree//server/treeServer.php?view=markup
http://101companies.org/index.php/101feature:Company
https://github.com/101companies/101implementations/blob/master/html5tree/server/treeServer.php

www.manaraa.com

CHAPTER 5. IMPLEMENTATIONS 55

8 return loadCompany($jsonObject);
9 }

10 }
11

12 function loadCompany($jsonObject) {
13 // The $jsonObject contains the request of the

client.
14 $id = $jsonObject->id;
15

16 // This is the SQL statement to get the company with
a given id.

17 $request = "SELECT * FROM company WHERE id = $id";
18 $result = mysql_query($request);
19 $row = mysql_fetch_object($result);
20

21 // These few commands create a new company and set
the id and the name.

22 $company = new Company();
23 $company->setId($row->id);
24 $company->setName($row->name);
25

26 // The subdepartments are added to the company.
27 $company->setDepartments(loadDepartmentsForCompany(

$id));
28

29 return $company;
30 }
31

32 ...

The perform($jsonObject) method interprets the request of the client. After the
server retrieves the company id, it is able to select the company out of the MySQL DBMS.
After that, a new company object is filled with id and name. The subdepartments are
added to the company within a nested tree structure. The $company is transformed to
JSON before the response is returned to the client:

Listing 5.19: connection.php
1 ...
2

3 echo json_encode(perform($jsonObject));
4

5 ...

Client In the introduction of the tree creation section we have introduced the param-
eter strategy, which is used for the views callback initialization after the response is
returned asynchronously. This strategy is initialized in the controller.js and simply invokes
the method refresh of the treeView.js:

http://101companies.org/index.php/Category:Client
http://101companies.org/index.php/Technology:MySQL
http://101companies.org/index.php/Category:Database management system
http://101companies.org/index.php/Language:JSON
https://github.com/101companies/101implementations/blob/master/html5tree/server/databaseConnection/connection.php
http://101companies.org/index.php/Asynchronous communication
https://github.com/101companies/101implementations/blob/master/html5tree/client/javascript/controller.js?view=markup
https://github.com/101companies/101implementations/blob/master/html5tree/client/javascript/view/treeView.js?view=markup

www.manaraa.com

CHAPTER 5. IMPLEMENTATIONS 56

Listing 5.20: treeView.js
1 ...
2

3 // This method refreshs the tree view.
4 treeView.refresh = function() {
5 // The content variable contains the generated html

string for a nested unordered list.
6 content = "";
7

8 // If there are subdepartments, create a list item
with a ’plus’ symbol

9 if (treeModel.response.departments.length > 0) {
10 // The ’plus’ symbol is the button for expanding

the tree.
11 content += " <input id=\"0\" "
12 + "type=\"image\" src=\"symbols/plus.gif\" "
13 + "onclick=\"treeNavigation.toggleList(this)

\">";
14 // The name of the company is the button for

company load.
15 content += "<input type=\"button\" class=\"

companyButton\" value=\""
16 + treeModel.response.name
17 + "\" onclick=\"controller.loadCompany("
18 + treeModel.response.id
19 + ")\">";
20 // The subdepartments are added as sublists of

the company list item.
21 content += treeView.showDepartments(treeModel.

response.departments);
22 content += "";
23 // If there are no subdepartments, create a list

item with a ’dot’ symbol
24 } else {
25 content += "

"
26 + treeModel.response.name
27 + "";
28 }
29

30 content += "";
31

32 // This replaces the content of the tree division
with the generated html code in ’content’.

33 document.querySelector(’#tree’).innerHTML = content;
34 }
35

36 ...

https://github.com/101companies/101implementations/blob/master/html5tree/client/javascript/view/treeView.js

www.manaraa.com

CHAPTER 5. IMPLEMENTATIONS 57

Every tree item is a list item of a nested unordered list and consists of two visible parts, a
symbol and a name. The symbol refers to the position of the item within the tree. There
are dots for leafs and plus and minus symbols for unexpanded and expanded tree items.
The name is a link, which refers to a load function. This function returns a complete data
set for the requested entity.

Delete department

The following part illustrates an example for the deletion of a department according to
the Structural editing. Please visit 101implementation html5ajax to get an overview over
loading company entities with XMLHttpRequest and JSON. Keep in mind, that there is no
need to load subdepartments or employees for a specific department, since the tree provides
the structure to pick these subelements.
After a department is selected, the user can press the delete button to invoke the corre-
sponding client side delete method implemented in departmentModel.js:

Listing 5.21: departmentModel.js
1 departmentModel.deleteEntity = function(strategy) {
2 departmentModel.initDepartment(departmentModel.

response.id);
3 departmentModel.department.action = "delete";
4 requestUnit.sendRequest(strategy, departmentModel.

url, departmentModel.department);
5 }

This method will send a request in the JSON format, which contains all necessary infor-
mations to delete a department with a given id. Most of the JSON messages in the web
application are simplified versions of the messages in 101implementation html5ajax.

1 {
2 "id":1,
3 "table":"department",
4 "action":"delete"
5 }

This request is received by the server side PHP script, which deletes the department with
the id 1. The cascading delete anchored in the database provides a recursive deletion for
all containing subdepartments. Hence, the following shows the simple delete request:

Listing 5.22: departmentServer.php
1 $request = "DELETE FROM department WHERE id = " . $id;
2 mysql_query($request);

5.5.7 Architecture
The basic architecture is similar to the architecture of 101implementation html5ajax. It
is based on the MVC architectural pattern in combination with a client-server architec-
ture. The key difference is the encapsulation of all views within one HTML file named

http://101companies.org/index.php/101feature:Structural editing
http://101companies.org/index.php/101implementation:html5ajax
http://101companies.org/index.php/Category:Client
https://github.com/101companies/101implementations/blob/master/html5tree//client/javascript/model/departmentModel.js?view=markup
https://github.com/101companies/101implementations/blob/master/html5tree/client/javascript/model/departmentModel.js
http://101companies.org/index.php/101implementation:html5ajax
http://101companies.org/index.php/Category:Server
http://101companies.org/index.php/Language:PHP
https://github.com/101companies/101implementations/blob/master/html5tree/server/departmentServer.php
http://101companies.org/index.php/101implementation:html5ajax
http://101companies.org/index.php/Category:Architectural pattern
http://101companies.org/index.php/Client-server architecture
http://101companies.org/index.php/Client-server architecture
http://101companies.org/index.php/Language:HTML

www.manaraa.com

CHAPTER 5. IMPLEMENTATIONS 58

index.html, controlled by different JavaScript files, which are located in view and the
controller.js.

5.5.8 Usage
You need a web and MySQL server to run this application. In this tutorial both will be
taken care of by XAMPP: http://www.apachefriends.org/en/xampp.html
This tutorial adopts some parts of 101implementation mySql. The company.sql and sam-
pleCompany.sql are modified for this project. They are located in the ”sqlScripts” folder.

• Download and install XAMPP

• Open the ”XAMPP Control Panel” and start ”Apache” and ”MySQL”

• Use the guideline of 101implementation mySql up to ”Populate tables...” with the mod-
ified sql scripts.

Once the database is running, follow the next steps:

• To start the application, you need to download all project files except the README

• Put the files into the htdocs directory of your XAMPP (a new subdirectory in ”htdocs”
is recommended)

• Run index.html

The project is provided as a netbeans project. If you want to change the code, you have to:

• Download (http://netbeans.org/) and install NetBeans

• ”Open project” and select the html5tree folder

https://github.com/101companies/101implementations/blob/master/html5tree/client/index.html?view=markup
http://101companies.org/index.php/Language:JavaScript
https://github.com/101companies/101implementations/blob/master/html5tree/client/javascript/view?view=markup
https://github.com/101companies/101implementations/blob/master/html5tree/client/javascript/controller.js?view=markup
http://101companies.org/index.php/Technology:MySQL
http://101companies.org/index.php/101implementation:mySql
http://101companies.org/index.php/101implementation:mySql
http://101companies.org/index.php/Technology:NetBeans

www.manaraa.com

CHAPTER 5. IMPLEMENTATIONS 59

5.6 101implementation jsf

5.6.1 Intent
Web programming with JSF

5.6.2 Languages
• Java

• XHTML

• CSS

• XML

• JavaScript (generated)

5.6.3 Technologies
• JSF

• Hibernate

• Java EE

• NetBeans

• GlassFish

• Web browser

5.6.4 Features
• Company

• Total

• Cut

• Client-server

• Persistence

• Navigation

• Attribute editing

• Web UI

http://101companies.org/index.php/101implementation:jsf
http://101companies.org/index.php/Web programming
http://101companies.org/index.php/Language:Java
http://101companies.org/index.php/Language:XHTML
http://101companies.org/index.php/Language:CSS
http://101companies.org/index.php/Language:XML
http://101companies.org/index.php/Language:JavaScript
http://101companies.org/index.php/Technology:Hibernate
http://101companies.org/index.php/Technology:Java EE
http://101companies.org/index.php/Technology:NetBeans
http://101companies.org/index.php/Technology:GlassFish
http://101companies.org/index.php/Category:Web browser
http://101companies.org/index.php/101feature:Company
http://101companies.org/index.php/101feature:Total
http://101companies.org/index.php/101feature:Cut
http://101companies.org/index.php/101feature:Client-server
http://101companies.org/index.php/101feature:Persistence
http://101companies.org/index.php/101feature:Navigation
http://101companies.org/index.php/101feature:Attribute editing
http://101companies.org/index.php/101feature:Web UI

www.manaraa.com

CHAPTER 5. IMPLEMENTATIONS 60

5.6.5 Motivation
This implementation covers the popular approach for web programming with JSF. JSF has
a great support for the development of user interfaces in the MVC context. This imple-
mentation is considered as a typical Java based implementation with an amount of related
and commonly used technologies like the Hibernate persistence API and the GlassFish
application server.

5.6.6 Illustration
The main architecture is based on the MVC pattern. JSF itself is focussed on the view
and the controller. The user interface (view) is provided by facelets, which is based on the
XHTML dialect. A facelet contains the necessary GUI components for the specific view
and connects them to the corresponding methods of the backend Java Beans (model). The
data provided by the Java Beans is stored within a MySQL database, accessible through
Hibernate with the help of DAOs (data access objects). The following sections provide a
specific description of the involved parts.

GUI development

Facelets provide HTML page generation. Since the XML tags for the JSF components can
not be displayed by the browser, they have to be changed to corresponding HTML tags via
component aliasing. The following example shows the JSF components needed for total
and cut of a company:

Listing 5.23: company.xhtml
1 <h:outputLabel for="total" value="Total:"/>
2 <h:outputText id="total" value="#{companyBean.total}"/>
3 <h:commandButton value="cut" actionListener="#{

companyBean.cut()}"/>

The three elements model the GUI components for the label ”Total”, the textfield for the
Total and the button for the Cut. For example, the <h:commandButton .../> is
transformed into the HTML tag <input .../>. The communication between client
and server is provided by XMLHttpRequest. The needed JavaScript files are automatically
generated by the framework.
There is no need to implement the controller since it is provided by the Servlet API used
within the JSF framework.

Managed Beans

The previously introduced command button ”cut” invokes the corresponding method cut
in the Java Bean CompanyBean. In context of JSF, such beans are called Managed Beans:

Listing 5.24: CompanyBean.java
1 @ManagedBean(name = "companyBean")
2 @RequestScoped
3 public class CompanyBean {
4

http://101companies.org/index.php/Category:101implementation
http://101companies.org/index.php/web programming
http://101companies.org/index.php/Category:User interface
http://101companies.org/index.php/Language:Java
http://101companies.org/index.php/Category:Technology
http://101companies.org/index.php/Technology:Hibernate
http://101companies.org/index.php/101feature:Persistence
http://101companies.org/index.php/Category:API
http://101companies.org/index.php/Technology:GlassFish
http://101companies.org/index.php/Category:Application server
http://101companies.org/index.php/Category:User interface
http://101companies.org/index.php/Technology:Facelets
http://101companies.org/index.php/Language:XHTML
http://101companies.org/index.php/GUI
http://101companies.org/index.php/Technology:Java Bean
http://101companies.org/index.php/Technology:MySQL
http://101companies.org/index.php/Technology:Hibernate
http://101companies.org/index.php/DAO
http://101companies.org/index.php/Language:HTML
https://github.com/101companies/101implementations/blob/master/jsf/jsf/web/company.xhtml
http://101companies.org/index.php/101feature:Total
http://101companies.org/index.php/101feature:Cut
http://101companies.org/index.php/Category:Client
http://101companies.org/index.php/Category:Server
http://101companies.org/index.php/Language:JavaScript
http://101companies.org/index.php/Technology:Servlet API
https://github.com/101companies/101implementations/blob/master/jsf/jsf/src/java/company/beans/jsf/CompanyBean.java

www.manaraa.com

CHAPTER 5. IMPLEMENTATIONS 61

5 ...
6

7 // This is the set of employees for the whole
company (loaded previously by the method "
loadCompany(int id))".

8 private Set<Employee> employees;
9

10 ...
11

12 // The method returns the current value for total of
the loaded company.

13 public double getTotal() {
14 return total;
15 }
16

17 // The method cuts all employees of the loaded
company.

18 public void cut() {
19 // Here we retrieve the session and begin the

transaction with Hibernate.
20 HibernateUtil.getSessionFactory().

getCurrentSession().beginTransaction();
21 DAOFactory daoFactory = DAOFactory.instance(

DAOFactory.HIBERNATE);
22 // The employeeDAO manages the database

interaction.
23 EmployeeDAO employeeDAO = daoFactory.

getEmployeeDAO();
24

25 // This loop iterates over the previously loaded
employees and persists the new salary values

.
26 for (Employee employee : employees) {
27 employee.setSalary(employee.getSalary() / 2)

;
28 employeeDAO.makePersistent(employee);
29 }
30

31 total = total / 2;
32

33 // Finally, we commit and close the transaction.
34 HibernateUtil.getSessionFactory().

getCurrentSession().getTransaction().commit()
;

35 }
36

37 ...
38

39 }

www.manaraa.com

CHAPTER 5. IMPLEMENTATIONS 62

The class CompanyBean encapsulates the server-side business methods for the applica-
tion. Responses for GET requests are provided by simple Java getters (e. g. getTotal()).
POST requests are handled by corresponding methods (e. g. cut()) or by Java setters.
The two annotations for the class provide the following features:

• @ManagedBean annotates, that the bean is a managed bean in the context of JSF. The
attribute name provides the connection point useable within the facelets.

• @RequestScope annotates, that every new request affecting the CompanyBean will
create a new instance.

The application server GlassFish provides the necessary container for the beans and man-
ages the application.

Persistence

The principle of the DAO pattern is the exchangeability of the persistence layer. This is
provided by a DAOFactory, which instantiates the specific DAOs for the used persis-
tence technology. In our case, the technology is Hibernate. According to the interface
GenericDAO.java, every implemented DAO provides the methods to load an entity either
by id or by example, to load all entities corresponding to a specific class, or to persist a
given entity.

Listing 5.25: GenericDAO.java
1 T findById(ID id, boolean lock);
2 List<T> findAll();
3 List<T> findByExample(T exampleInstance);
4 T makePersistent(T entity);
5 void makeTransient(T entity);

The T stands for either the class Company, or the class Department, or the class
Employee. The concrete methods for Hibernate are implemented in GenericDAOHiber-
nate.java. This structure enables the Java Beans to perform data-affecting actions mostly
independent from the persistence implementation:

Listing 5.26: CompanyBean.java
1 @ManagedBean(name = "companyBean")
2 @RequestScoped
3 public class CompanyBean {
4

5 ...
6

7 public void cut() {
8 // There has to be a transaction before creating

hibernate requests.
9 HibernateUtil.getSessionFactory().

getCurrentSession().beginTransaction();
10

11 // Retrieve the Hibernate DAOFactory for
creating the employee DAO.

http://101companies.org/index.php/Category:Annotation
http://101companies.org/index.php/Category:Application server
http://101companies.org/index.php/Technology:GlassFish
http://101companies.org/index.php/Technology:Hibernate
https://github.com/101companies/101implementations/blob/master/jsf/jsf/java/company/dao/interfaces/generic/GenericDAO.java?view=markup
https://github.com/101companies/101implementations/blob/master/jsf/jsf/java/company/dao/interfaces/generic/GenericDAO.java
https://github.com/101companies/101implementations/blob/master/jsf/jsf/java/company/dao/hibernate/generic/GenericDAOHibernate.java?view=markup
https://github.com/101companies/101implementations/blob/master/jsf/jsf/java/company/dao/hibernate/generic/GenericDAOHibernate.java?view=markup
https://github.com/101companies/101implementations/blob/master/jsf/jsf/src/java/company/beans/jsf/CompanyBean.java

www.manaraa.com

CHAPTER 5. IMPLEMENTATIONS 63

12 DAOFactory daoFactory = DAOFactory.instance(
DAOFactory.HIBERNATE);

13 EmployeeDAO employeeDAO = daoFactory.
getEmployeeDAO();

14

15 // Cut all employees and save them.
16 for (Employee employee : employees) {
17 employee.setSalary(employee.getSalary() / 2)

;
18 employeeDAO.makePersistent(employee);
19 }
20

21 // Calculate new total value.
22 total = total / 2;
23

24 // The transaction commits the data and ends.
25 HibernateUtil.getSessionFactory().

getCurrentSession().getTransaction().commit()
;

26 }
27

28 ...
29

30 }

There is an issue to be solved in the future: The transaction should be invoked by anno-
tations or any automated transaction management instead of using corresponding methods
with the help of HibernateUtil. If there is no Hibernate persistence, the calls will lead
to exceptions.

5.6.7 Architecture
The facelets (company.xhtml, department.xhtml, employee.xhtml) are located in the
folder jsf/web/. There is a template.xhtml as well, which arranges the main UI com-
ponents of each view. The folder jsf/web/resources/css/ contains the corresponding CSS
files.
The navigation between the different facelets is managed with the help of the file faces-
config.xml, while the starting page and the class for the controller servlet is defined in the
web.xml.
The jsf/src/java/ folder contains all relevant code for the realization of the main features
(except navigation):

• The hibernate.cfg.xml defines the necessary data for the database connection and the
classes for hibernate mapping.

• The folder src/java/company/beans/jsf/ contains the three beans (CompanyBean.java,
DepartmentBean.java, EmployeeBean.java) necessary for handling the companies,
departments and employees.

• The classes folder contains the relevant classes for the instantiation of the company
system.

http://101companies.org/index.php/Technology:Facelets
https://github.com/101companies/101implementations/blob/master/jsf/jsf/web/company.xhtml?view=markup
https://github.com/101companies/101implementations/blob/master/jsf/jsf/web/department.xhtml?view=markup
https://github.com/101companies/101implementations/blob/master/jsf/jsf/web/employee.xhtml?view=markup
https://github.com/101companies/101implementations/blob/master/jsf/jsf/web/template.xhtml?view=markup
http://101companies.org/index.php/Category:User interface
http://101companies.org/index.php/Language:CSS
http://101companies.org/index.php/Technology:Facelets
http://101companies.org/index.php/Technology:Servlet API
https://github.com/101companies/101implementations/blob/master/jsf/jsf/web/WEB-INF/web.xml?view=markup
http://101companies.org/index.php/Category:101feature
http://101companies.org/index.php/101feature:Navigation
http://101companies.org/index.php/Category:Database management system
http://101companies.org/index.php/Category:Class
http://101companies.org/index.php/Technology:Hibernate
http://101companies.org/index.php/Category:Mapping
http://101companies.org/index.php/Technology:Java Bean
https://github.com/101companies/101implementations/blob/master/jsf/jsf/src/java/company/beans/jsf/CompanyBean.java?view=markup
https://github.com/101companies/101implementations/blob/master/jsf/jsf/src/java/company/beans/jsf/DepartmentBean.java?view=markup
https://github.com/101companies/101implementations/blob/master/jsf/jsf/src/java/company/beans/jsf/EmployeeBean.java?view=markup
https://github.com/101companies/101implementations/blob/master/jsf/jsf/src/java/company/classes?view=markup
http://101companies.org/index.php/Category:Class
http://101companies.org/index.php/101feature:Company
http://101companies.org/index.php/101feature:Company

www.manaraa.com

CHAPTER 5. IMPLEMENTATIONS 64

• The dao folder contains all necessary classes and factories for the exchangablility of the
data model corresponding to the DAO design pattern.

5.6.8 Usage
You need an sql-server to use this application. In this tutorial both will be handled by
XAMPP (http://www.apachefriends.org/en/xampp.html).
You can use the company.sql and sampleCompany.sql of 101implementation html5tree for
the jsf project.

• Download and install XAMPP

• Open the ”XAMPP Control Panel” and start ”Apache” and ”MySQL”

• Use the guideline of 101implementation mySql up to ”Populate tables...”

After the database is running, follow the next steps:

• To start the application, you have to download the sources from github

• Open the project with NetBeans (http://netbeans.org/)

• Select the project, right click and run

• The glassfish-server (and a browser window) with the application will start automatically

The project is implemented with NetBeans 7.0.1. You will need the full version with an
installed GlassFish Application server.

https://github.com/101companies/101implementations/blob/master/jsf/jsf/src/java/company/dao?view=markup
http://101companies.org/index.php/DAO
http://101companies.org/index.php/Category:Design pattern
http://101companies.org/index.php/101implementation:html5tree
http://101companies.org/index.php/101implementation:mySql
http://101companies.org/index.php/Technology:NetBeans
http://101companies.org/index.php/Technology:NetBeans
http://101companies.org/index.php/Technology:GlassFish
http://101companies.org/index.php/Category:Application server

www.manaraa.com

CHAPTER 5. IMPLEMENTATIONS 65

5.7 101implementation zend

5.7.1 Intent
Web programming in PHP with the Zend framework

5.7.2 Languages
• PHP

• HTML

• CSS

5.7.3 Technologies
• Zend framework

• Web browser

5.7.4 Features
• Company

• Total

• Cut

• Client-server

• Navigation

• Persistence

• Attribute editing

• Web UI

5.7.5 Motivation
PHP is one of the most commonly used languages for web programming. To get a more
structured and valuable implementation, it is reasonable to choose a PHP based web-
application framework. The Zend framework provides a good infrastructure and a large
amount of pre-assembled components and supports form-based web development. The
use of PHP suggests an SQL DBMS like MySQL, to allow persistence. The connection to
the DBMS is provided by the database adapter included in the Zend framework.

5.7.6 Illustration
This section is divided into three parts. The first part describes the mapping of the entities,
the second part describes the implementation of Total and Cut and the third part describes
the development of the GUI.

http://101companies.org/index.php/101implementation:zend
http://101companies.org/index.php/Web programming
http://101companies.org/index.php/Language:PHP
http://101companies.org/index.php/Language:PHP
http://101companies.org/index.php/Language:HTML
http://101companies.org/index.php/Language:CSS
http://101companies.org/index.php/Category:Web browser
http://101companies.org/index.php/101feature:Company
http://101companies.org/index.php/101feature:Total
http://101companies.org/index.php/101feature:Cut
http://101companies.org/index.php/101feature:Client-server
http://101companies.org/index.php/101feature:Navigation
http://101companies.org/index.php/101feature:Persistence
http://101companies.org/index.php/101feature:Attribute editing
http://101companies.org/index.php/101feature:Web UI
http://101companies.org/index.php/Language:PHP
http://101companies.org/index.php/Category:Language
http://101companies.org/index.php/web programming
http://101companies.org/index.php/Category:101implementation
http://101companies.org/index.php/Category:web-application framework
http://101companies.org/index.php/Category:web-application framework
http://101companies.org/index.php/Language:SQL
http://101companies.org/index.php/Category:Database management system
http://101companies.org/index.php/Technology:MySQL
http://101companies.org/index.php/Category:Mapping
http://101companies.org/index.php/101feature:Total
http://101companies.org/index.php/101feature:Cut
http://101companies.org/index.php/GUI

www.manaraa.com

CHAPTER 5. IMPLEMENTATIONS 66

Object/Relational mapping

Persistence is provided by a MySQL database (see 101implementation mySql) and the
zend adapter for this specific database. The adapter is generated automatically according
to the corresponding entries in the file application.ini:

1 resources.db.adapter = "PDO_MYSQL"
2 resources.db.params.host = "localhost"
3 resources.db.params.username = "root"
4 resources.db.params.password = ""
5 resources.db.params.dbname = "test"

The entities of the company are mapped by specific classes, which are extended by the class
Zend Db Table Abstract. They create simple associative arrays out of the declared tables.
If we assume, that associative arrays are objects, we can call this process Object/Relational
mapping. To map a table, it is only necessary to specify the name of the designated table
within the corresponding class. The class Application Model DbTable Employee
in Employee.php illustrates the mapping of the employee table:

Listing 5.27: Employee.php
1 class Application_Model_DbTable_Employee extends

Zend_Db_Table_Abstract
2 {
3

4 protected $_name = ’employee’;
5

6 ...
7

8 }

Feature implementation

The features total and cut are both implemented in the model Employee.php in the sense
of MVC. The reason is, that these methods affect only employees, depend on the corre-
sponding company or department. The following example shows the calculation of the
total value for a company with a given $id.

Listing 5.28: Employee.php
1 class Application_Model_DbTable_Employee extends

Zend_Db_Table_Abstract
2 {
3

4 ...
5

6 public function getTotalForCompany($id) {
7 // cast the id to integer
8 $id = (int)$id;
9 // get all employees from the database

http://101companies.org/index.php/Object/Relational mapping
http://101companies.org/index.php/101feature:Persistence
http://101companies.org/index.php/Technology:MySQL
http://101companies.org/index.php/Category:Database management system
http://101companies.org/index.php/101implementation:mySql
https://github.com/101companies/101implementations/blob/master/zend/application/configs/application.ini?view=markup
http://101companies.org/index.php/Category:Class
http://101companies.org/index.php/Object/Relational mapping
http://101companies.org/index.php/Object/Relational mapping
https://github.com/101companies/101implementations/blob/master/zend/zend/application/models/DbTable/Employee.php?view=markup
https://github.com/101companies/101implementations/blob/master/zend/application/models/DbTable/Employee.php
http://101companies.org/index.php/101feature:Total
http://101companies.org/index.php/101feature:Cut
https://github.com/101companies/101implementations/blob/master/zend/application/models/DbTable/Employee.php?view=markup
http://101companies.org/index.php/101feature:Total
https://github.com/101companies/101implementations/blob/master/zend/application/models/DbTable/Employee.php

www.manaraa.com

CHAPTER 5. IMPLEMENTATIONS 67

10 // - with the given company cid
11 // - as an array composed of associative arrays

for each employee
12 $rows = $this->fetchAll(’cid = ’ . $id);
13

14 $total = 0;
15

16 // walk through the array and add every salary
17 foreach ($rows as $row) {
18 $total += $row->salary;
19 }
20 return $total;
21 }
22

23 }

GUI

It is possible to create the GUI using a native HTML-PHP web page. The other way is to
create simple forms by using the extension Zend Form. Zend framework offers a great
support for form based websites. That means, that it is possible to generate forms with
almost no HTML code, because the web-application framework automatically generates
the website out of the pre-defined PHP objects. The objects are initialized and added to
the specific form in a developer-defined order. The following example shows the company
form. The different GUI components are explained in the comments:

Listing 5.29: Company.php
1 class Application_Form_Company extends Zend_Form
2 {
3 var $departmentList;
4

5 public function init()
6 {
7

8 // The field helps to identify the form within
the application.

9 $this->setName(’company’);
10

11 // The hidden field keeps the company id for
further use.

12 $id = new Zend_Form_Element_Hidden(’id’);
13 $id->addFilter(’Int’);
14

15 // The name field contains the name of the
company.

16 $name = new Zend_Form_Element_Text(’name’);
17 $name ->setLabel(’Name’)
18 ->setRequired(true)

http://101companies.org/index.php/Language:HTML
http://101companies.org/index.php/Language:PHP
http://101companies.org/index.php/Language:HTML
https://github.com/101companies/101implementations/blob/master/zend/application/forms/Company.php

www.manaraa.com

CHAPTER 5. IMPLEMENTATIONS 68

19 ->addFilter(’StripTags’)
20 ->addFilter(’StringTrim’)
21 ->addValidator(’NotEmpty’);
22

23 // The button invokes the function to save a new
name.

24 $submit = new Zend_Form_Element_Submit(’save’);
25 $submit ->setAttrib(’id’, ’submitbutton’)
26 ->setOptions(array(’class’ => ’button’))

;
27

28 // The following list shows all subdepartments
of the company.

29 $this->departmentList = new
Zend_Form_Element_Select(’departments’);

30 $this->departmentList ->setLabel(’Departments’);
31 $this->departmentList->

setRegisterInArrayValidator(false);
32

33 // The button is pressed to select a department
out of the list.

34 $select = new Zend_Form_Element_Submit(’select’)
;

35 $select ->setAttrib(’id’, ’submitbutton’);
36

37 // The textfield shows the total value.
38 $total = new Zend_Form_Element_Text(’total’,

array("readonly" => "readonly"));
39 $total ->setLabel(’Total’);
40

41 // The button is used to cut the company.
42 $cut = new Zend_Form_Element_Submit(’cut’);
43 $cut->setAttrib(’id’, ’submitbutton’);
44

45 // There is a block created in the GUI for each
array added in the following way:

46 $this->addElements(array($id, $name, $submit));
47 $this->addElements(array($this->departmentList,

$select));
48 $this->addElements(array($total, $cut));
49 }
50 ...
51 }

If the controller wants to fill in some data into the total ($total) field, it must call the
method populate of the previously initialized form. If the array parameter of the method
contains a field total, the textfield with the identifier ”total” is filled automatically with
the value contained in the array:

www.manaraa.com

CHAPTER 5. IMPLEMENTATIONS 69

Listing 5.30: Company.php
1 ...
2

3 $c = $company->getCompany($id);
4 $c[total] = $employee->getTotalForCompany($id);
5

6 $form->populate($c);
7

8 ...

5.7.7 Architecture
• The entry point for the application is the generated index.php in the public folder. This

folder contains the style sheets, too.

• All relevant code for the functionality is located in the application folder.

• The architecture is strictly based on the MVC-pattern. There are different folders for the
models (models), the views (views) and the controllers (controllers). This is required,
because the framework automatically identifies the classes and its concerns with the help
of these namespaces.

• The forms are located in the forms folder.

5.7.8 Usage
This project needs a running MySQL-database. We recommend XAMPP. You can use the
company.sql and sampleCompany.sql of 101implementation mySql for this project.

• Download and install XAMPP.

• Open the ”XAMPP Control Panel” and start ”Apache” and ”MySQL”.

• Use the guideline of 101implementation mySql up to ”Populate tables...”.

After the database has started:

• Download the sources.

• Copy the complete zend folder to the htdocs-directory of your XAMPP-installation.

• Start your Web browser and go to http://localhost/zend/public/.

If you want to continue with the development of this 101implementation, please download
NetBeans and import the project into the IDE.

https://github.com/101companies/101implementations/blob/master/zend/application/forms/Company.php
https://github.com/101companies/101implementations/blob/master/zend/zend/public/index.php?view=markup
https://github.com/101companies/101implementations/blob/master/zend/zend/public?view=markup
http://101companies.org/index.php/Language:CSS
https://github.com/101companies/101implementations/blob/master/zend/zend/application?view=markup
https://github.com/101companies/101implementations/blob/master/zend/zend/application/models?view=markup
https://github.com/101companies/101implementations/blob/master/zend/zend/application/views?view=markup
https://github.com/101companies/101implementations/blob/master/zend/zend/application/controllers?view=markup
http://101companies.org/index.php/Category:framework
https://github.com/101companies/101implementations/blob/master/zend/zend/application/forms?view=markup
http://101companies.org/index.php/Technology:MySQL
http://101companies.org/index.php/Technology:XAMPP
http://101companies.org/index.php/101implementation:mySql
http://101companies.org/index.php/Technology:XAMPP
http://101companies.org/index.php/101implementation:mySql
http://101companies.org/index.php/Category:Web browser
http://101companies.org/index.php/Category:101implementation
http://101companies.org/index.php/Technology:NetBeans
http://101companies.org/index.php/Category:IDE

www.manaraa.com

CHAPTER 5. IMPLEMENTATIONS 70

5.8 101implementation pyjamas

5.8.1 Intent
Web programming in Python with Pyjamas

5.8.2 Languages
• Python

• JavaScript (generated)

• HTML (generated)

5.8.3 Technologies
• Pyjamas

• Web browser

5.8.4 Features
• Company

• Total

• Cut

• Code generation

• Navigation

• Attribute editing

• Web UI

5.8.5 Motivation
Pyjamas offers the possibility to generate pure JavaScript-Code out of Python source code.
One advantage of pyjamas is, that it is very simple to understand. Apart from that, there
is no need for complicated HTML or JavaScript programming. Pyjamas is combined with
CSS. It also can be considered as a ”spin off” of GWT.

5.8.6 Illustration
Although pyjamas demands no specific architecture, the main parts of the application are
located in a simple Python file 101Companies.py. Nevertheless, we have devided the
code into two concerns encapsulated into different classes. One class contains the GUI
generation, another class contains the company data and manages the major functionalities
of the app. There are further classes for each company, department and employee. The
complete Python code illustrated in this section is translated directly to JavaScript.

http://101companies.org/index.php/101implementation:pyjamas
http://101companies.org/index.php/Web programming
http://101companies.org/index.php/Language:Python
http://101companies.org/index.php/Language:Python
http://101companies.org/index.php/Language:JavaScript
http://101companies.org/index.php/Language:HTML
http://101companies.org/index.php/Category:Web browser
http://101companies.org/index.php/101feature:Company
http://101companies.org/index.php/101feature:Total
http://101companies.org/index.php/101feature:Cut
http://101companies.org/index.php/101feature:Code generation
http://101companies.org/index.php/101feature:Navigation
http://101companies.org/index.php/101feature:Attribute editing
http://101companies.org/index.php/101feature:Web UI
http://101companies.org/index.php/Language:JavaScript
http://101companies.org/index.php/Language:Python
http://101companies.org/index.php/Language:HTML
http://101companies.org/index.php/Language:CSS
http://101companies.org/index.php/Language:Python
https://github.com/101companies/101implementations/blob/master/pyjamas/101Companies.py?view=markup
http://101companies.org/index.php/GUI
http://101companies.org/index.php/Language:JavaScript

www.manaraa.com

CHAPTER 5. IMPLEMENTATIONS 71

GUI implementation

The GUI is implemented with the help of pre defined Pyjamas classes. There is a grid
with all necessary components like labels, textfields, listboxes and buttons. The following
method of the class 101CompaniesAppGUI shows the initialization of the employee
part of the GUI:

Listing 5.31: 101Companies.py
1 # initializes the GUI for the employee view
2 def initEmployeeGUI(self):
3 self.grid.clear()
4 self.grid.resize(4, 3)
5

6 # row 1
7 self.grid.setWidget(0, 0, Label("Name:")) # column

1 = name
8 self.grid.setWidget(1, 0, Label("Address:")) #

column 2 = address
9 self.grid.setWidget(2, 0, Label("Salary:")) # column

3 = salary
10

11 # row 2
12 self.grid.setWidget(0, 1, self.name)
13 self.grid.setWidget(1, 1, self.address)
14 self.grid.setWidget(2, 1, self.total)
15

16 # row 3
17 self.grid.setWidget(0, 2, self.save)
18 self.grid.setWidget(2, 2, self.cut)
19 self.grid.setWidget(3, 2, self.back)
20

21 # initialize content for current employee
22 self.name.setText(self.current.name)
23 self.address.setText(self.current.address)
24 self.total.setText(self.current.salary)

The three textfields self.name, self.address and self.total and the buttons
self.save, self.cut and self.back are initialized in the constructor of the class
101CompaniesAppGUI. The self parameter represents the current instance of the
class.

Feature implementation

There is only one handler for each button located in the class 101CompaniesAppGUI.
The handler is implemented by the function onClick. It contains a control structure,
which determines the clicked button:

Listing 5.32: 101Companies.py
1 def onClick(self, sender):

http://101companies.org/index.php/Category:Class
https://github.com/101companies/101implementations/blob/master/pyjamas/101Companies.py
https://github.com/101companies/101implementations/blob/master/pyjamas/101Companies.py

www.manaraa.com

CHAPTER 5. IMPLEMENTATIONS 72

2 self.errors.clear()
3 if sender == self.cut:
4 self.current.cut()
5 self.total.setText(self.current.total())
6 else if sender == ...

In case of cut, this method cuts the current entity and refreshes the the total textfield. Every
class, be it the company, department or employee, implements such a cut method. In case
of employee, the specific implementation looks like:

Listing 5.33: 101Companies.py
1 class Employee:
2 ...
3

4 def cut(self):
5 self.salary = self.salary / 2
6

7 ...

5.8.7 Architecture
There are three files, which are not generated:

• The file 101Companies.py contains the main functionalities of the application.

• 101Companies.html is the index page for the application.

• style.css defines the CSS attributes for the elements.

The file 101Companies.py is divided into three parts:

• The company structure and most of the attribute editing is provided by the classes com-
pany, department and employee.

• The GUI is provided by the class 101CompaniesAppGUI.

• The company initialization and the low-level management of the departments and em-
ployees is provided by the class 101CompaniesApp.

5.8.8 Usage
• install pyjamas (getting started)

• download the sources

• open a terminal and move to your local pyjamas implementation-folder

• type pyjsbuild 101companies.py

• open 101Companies.html with your Web browser

If you only want to watch the HTML/javaScript-result of the compile process, please:

• download the sources

• open 101Companies.html with your Web browser

https://github.com/101companies/101implementations/blob/master/pyjamas/101Companies.py
https://github.com/101companies/101implementations/blob/master/pyjamas/101Companies.py?view=markup
https://github.com/101companies/101implementations/blob/master/pyjamas/public/101Companies.html?view=markup
https://github.com/101companies/101implementations/blob/master/pyjamas/public/style.css?view=markup
http://101companies.org/index.php/Language:CSS
https://github.com/101companies/101implementations/blob/master/pyjamas/101Companies.py?view=markup
http://101companies.org/index.php/101feature:Company
http://101companies.org/index.php/101feature:Attribute editing
http://101companies.org/index.php/GUI
http://pyjs.org/wiki/GettingStarted/
http://101companies.org/index.php/Category:101implementation
https://github.com/101companies/101implementations/blob/master/pyjamas/output/101Companies.html?view=markup
http://101companies.org/index.php/Category:Web browser
http://101companies.org/index.php/Language:HTML
http://101companies.org/index.php/Language:JavaScript
https://github.com/101companies/101implementations/blob/master/pyjamas/output/101Companies.html?view=markup
http://101companies.org/index.php/Category:Web browser

www.manaraa.com

CHAPTER 5. IMPLEMENTATIONS 73

5.9 101implementation gwtTree

5.9.1 Intent
Tree-based web programming with GWT

5.9.2 Languages
• Java

• JavaScript

• HTML

• XML

• CSS

5.9.3 Technologies
• GWT (Version 2.5)

• Web browser

5.9.4 Features
• Company

• Cut

• Total

• Code generation

• Precedence

• Client-server

• Navigation

• Attribute editing

• Structural editing

• Web UI

5.9.5 Motivation
GWT is a framework for creating JavaScript web applications with Ajax support in Java.
Thereby, the complete JavaScript code is generated out of the Java code. The result is
a complete client-server-based web application with a tree based GUI. Additionaly, the
implementation extends the basic 101implementation gwt adding the Attribute editing and
Structural editing.

http://101companies.org/index.php/101implementation:gwtTree
http://101companies.org/index.php/101feature:Navigation
http://101companies.org/index.php/web programming
http://101companies.org/index.php/Language:Java
http://101companies.org/index.php/Language:JavaScript
http://101companies.org/index.php/Language:HTML
http://101companies.org/index.php/Language:XML
http://101companies.org/index.php/Language:CSS
http://101companies.org/index.php/Category:Web browser
http://101companies.org/index.php/101feature:Company
http://101companies.org/index.php/101feature:Cut
http://101companies.org/index.php/101feature:Total
http://101companies.org/index.php/101feature:Code generation
http://101companies.org/index.php/101feature:Precedence
http://101companies.org/index.php/101feature:Client-server
http://101companies.org/index.php/101feature:Navigation
http://101companies.org/index.php/101feature:Attribute editing
http://101companies.org/index.php/101feature:Structural editing
http://101companies.org/index.php/101feature:Web UI
http://101companies.org/index.php/Language:JavaScript
http://101companies.org/index.php/Category:Web application
http://101companies.org/index.php/Language:Java
http://101companies.org/index.php/Client-server architecture
http://101companies.org/index.php/GUI
http://101companies.org/index.php/101implementation:gwt
http://101companies.org/index.php/101feature:Attribute editing
http://101companies.org/index.php/101feature:Structural editing

www.manaraa.com

CHAPTER 5. IMPLEMENTATIONS 74

5.9.6 Illustration
The main difference to the 101implementation gwt implementation is the improvement of
the navigation. Hence, the focus of this section is the development of the GUI and the
implementation of the new features.

GUI implementation

The supervising component of the GUI is the parent class implemented in GwtTree.java.
This component manages the visibility of the three panels CompanyPanel.java, Depart-
mentPanel.java and EmployeePanel.java and, additionaly, contains the panel TreeP-
anel.java. The method onModuleLoad() initializes all these panels on application
start.

Tree The class Tree, included in GWT, provides great support for a tree based view.
Every tree item contains a user object with the identifier of the specific entity. The tree
generation starts with the company as root:

Listing 5.34: TreePanel.java
1 ...
2

3 for (CompanyItem item : info.getCompanies()) {
4 TreeItem root = new TreeItem(item.getName());
5 root.setUserObject(item);
6 appendDepsAndEmps(root, item.getDepartments());
7 addItem(root);
8 }
9

10 ...

First, the tree item for the company is generated with the name of the company. The
setUserObject method adds the CompanyItem with the identifier of the company.
The method appendDepsAndEmps appends all departments and employees to the com-
pany root. At last, this root is added to the tree.
The selection handler of the tree invokes the displaying of the additional informations for
each entity included in the company:

Listing 5.35: TreePanel.java
1 ...
2

3 this.addSelectionHandler(new SelectionHandler<TreeItem
>() {

4

5 @Override
6 public void onSelection(SelectionEvent<TreeItem>

event) {
7 Object obj = event.getSelectedItem().

getUserObject();
8 if (obj instanceof CompanyItem) {

http://101companies.org/index.php/101implementation:gwt
http://101companies.org/index.php/101feature:Navigation
https://github.com/101companies/101implementations/blob/master/gwtTree/src/org/softlang/client/GwtTree.java?view=markup
https://github.com/101companies/101implementations/blob/master/gwtTree/src/org/softlang/client/CompanyPanel.java?view=markup
https://github.com/101companies/101implementations/blob/master/gwtTree/src/org/softlang/client/DepartmentPanel.java?view=markup
https://github.com/101companies/101implementations/blob/master/gwtTree/src/org/softlang/client/DepartmentPanel.java?view=markup
https://github.com/101companies/101implementations/blob/master/gwtTree/src/org/softlang/client/EmployeePanel.java?view=markup
https://github.com/101companies/101implementations/blob/master/gwtTree/src/org/softlang/client/TreePanel.java?view=markup
https://github.com/101companies/101implementations/blob/master/gwtTree/src/org/softlang/client/TreePanel.java?view=markup
https://github.com/101companies/101implementations/blob/master/gwtTree/src/org/softlang/client/TreePanel.java
https://github.com/101companies/101implementations/blob/master/gwtTree/src/org/softlang/client/TreePanel.java

www.manaraa.com

CHAPTER 5. IMPLEMENTATIONS 75

9 TreePanel.this.main.showCompany(((
CompanyItem)obj).getId());

10 } else if (obj instanceof DepartmentItem) {
11 TreePanel.this.main.showDepartment(((

DepartmentItem)obj).getId());
12 } else if (obj instanceof EmployeeItem) {
13 TreePanel.this.main.showEmployee(((

EmployeeItem)obj).getId());
14 }
15 }
16 });
17

18 ...

The TreePanel.this.main member provides the main class GwtTree.java. There is
a different method TreePanel.this.main.show... for each different entity class.
This method includes the specific company, department or employee panel into the GUI
and initializes it with the corresponding data.

Panel The following section illustrates the main functionalities of the department panel.
This panel containes two textfields for the name and the total value and two listboxes for
the parent department and the manager. These elements are encapsulated within a grid:

Listing 5.36: DepartmentPanel.java
1 ...
2

3 Grid grid = new Grid(4, 3);
4

5 ...
6

7 Label lname = new Label("Name:");
8 lname.setWidth("60px");
9

10 // add labels
11 grid.setWidget(0, 0, lname);
12 grid.setWidget(1, 0, new Label("Total:"));
13 grid.setWidget(2, 0, new Label("Manager:"));
14 grid.setWidget(3, 0, new Label("Parent:"));
15

16 // add textboxes
17 grid.setWidget(0, 1, name);
18 grid.setWidget(1, 1, total);
19 grid.setWidget(2, 1, manager);
20 grid.setWidget(3, 1, parent);
21

22 ...
23

24 add(grid);
25

https://github.com/101companies/101implementations/blob/master/gwtTree/src/org/softlang/client/GwtTree.java?view=markup
https://github.com/101companies/101implementations/blob/master/gwtTree/src/org/softlang/client/DepartmentPanel.java

www.manaraa.com

CHAPTER 5. IMPLEMENTATIONS 76

26 HorizontalPanel buttons = new HorizontalPanel();
27

28 ...
29

30 buttons.add(save);
31 buttons.add(cut);
32 buttons.add(delete);
33

34 add(buttons);
35

36 ...

The Grid constructor has two parameters for the table rows and columns. First, the labels
are added and second, the textfields and listboxes are added. The buttons cut, save and
delete are added within a seperate HorizontalPanel buttons.

Feature implementation

The following part shows the implementation of the Cut for departments. We assume, that
a user has clicked on the ”Cut” button to create a corresponding request. All client side
requests are handled via asynchronous communication. First we need a connection to the
server-side service:

Listing 5.37: DepartmentPanel.java
1 private final DepartmentServiceAsync departmentService =

GWT.create(DepartmentService.class);

This simple initialisation provides an easy possibility to connect the client to the server.
The next step is to create a Cut request. We have implemented this feature with the in-
terfaces interface. By calling this method, the request is created and the corresponding
server side method is invoked. The two parameters of the method are in first the department
identifier (”department”) and in second an object for the asynchronous callback.

Listing 5.38: DepartmentPanel.java
1 departmentService.cut(department, new AsyncCallback<

Double>() {
2

3 // If the server responds an error, this method is
invoked.

4 @Override
5 public void onFailure(Throwable caught) {
6 Window.alert(caught.getMessage());
7 }
8

9 // If the request is successfully executed on server
side, this method is invoked with a new total

value as parameter.
10 @Override
11 public void onSuccess(Double result) {

http://101companies.org/index.php/101feature:Cut
http://101companies.org/index.php/Category:Client
http://101companies.org/index.php/Asynchronous communication
https://github.com/101companies/101implementations/blob/master/gwtTree/src/org/softlang/client/DepartmentPanel.java
http://101companies.org/index.php/Category:Client
http://101companies.org/index.php/Category:Server
http://101companies.org/index.php/101feature:Cut
https://github.com/101companies/101implementations/blob/master/gwtTree/src/org/softlang/client/interfaces?view=markup
https://github.com/101companies/101implementations/blob/master/gwtTree/src/org/softlang/client/interfaces?view=markup
http://101companies.org/index.php/Category:Server
https://github.com/101companies/101implementations/blob/master/gwtTree/src/org/softlang/client/DepartmentPanel.java

www.manaraa.com

CHAPTER 5. IMPLEMENTATIONS 77

12 DepartmentPanel.this.total.setText(Double.
toString(result));

13 }
14 });

If the request fails, the onFailure method simply returns an adequate error message. If the
request succeeds, the server returns the new total value for the department. The server side
request handler is implemented as a method:

Listing 5.39: DepartmentServiceImpl.java
1 @Override
2 public double cut(Integer id) {
3 // This statement loads the department with the

given id.
4 Department department = CompanyApp.getInstance()

.getDepartments().get(id);
5

6 // The department gets cutted.
7 department.cut();
8

9 // The new total value for the department is
returned.

10 return department.total();
11 }

This method first calls amethod cut for the specific department and then returns the new
total value to the client. The method for one department is implemented the following way:

Listing 5.40: Department.java
1 public class Department implements Parent {
2

3 // Members
4 private int id;
5 private String name;
6 private List<Department> departments;
7 private List<Employee> employees;
8 private Parent parent;
9

10 ...
11

12 // This method cuts the salary of all contained
employees and all contained subdepartments.

13 public void cut() {
14 for (Employee employee : employees) {
15 // The employees salary is devided by 2.
16 employee.cut();
17 }
18 for (Department department : departments) {

https://github.com/101companies/101implementations/blob/master/gwtTree/src/org/softlang/server/DepartmentServiceImpl.java
https://github.com/101companies/101implementations/blob/master/gwtTree/src/org/softlang/server/company/Department.java

www.manaraa.com

CHAPTER 5. IMPLEMENTATIONS 78

19 // The subdepartments are cutted recursively
.

20 department.cut();
21 }
22 }
23

24 ...
25

26 }

5.9.7 Architecture
• The application architecture is devided into client and server packages: client and server.

While the server package contains all relevant data for the representation of the com-
pany, the client package contains all relevant informations to generate a user interface.

• The interfaces for asynchronous communication between client and server are defined
in interfaces. These interfaces are also implemented by the service classes of the server.

• The communication between server and client is provided with serialized classes, which
can be interpreted by the client implementation. Therefore, we have two classes for each
company, department and employee to submit the data from the server to the client. The
first class, provided in guiinfo, delivers the data needed for the whole set of information
for an entity like name, address, salary and parent for a given employee. The second
class, provided in tree, delivers the data needed for generating a tree-based GUI.

• The GUI is divided into panels for each concern. They are located in client. The panels
are initialized in the class GwtTree.java. The panels CompanyPanel.java, Depart-
mentPanel.java and EmployeePanel.java are exchangeable with each other, while
the panels TreePanel.java and the ButtonPanel.java are always visible.

5.9.8 Usage
The implementation is created with Eclipse (3.7/Indigo) and the GWT-plugin (Version
2.5). If you want to compile the code, you need these versions to run it safely. You can get
them at:

• Eclipse

• GWT

After installation and start, simply open this web application as project in Eclipse:

• Please clean up (Project→ Clean...) the project before running.

• Right-click on the project, left-click on ”Run As” and left-click on ”Web-application”.

• Visit http://127.0.0.1:8888/GwtTree.html?gwt.codesvr=127.0.0.1:9997

If you want to recompile it, please end the old server-process by terminating the process in
the Eclipse console first.

https://github.com/101companies/101implementations/blob/master/gwtTree/src/org/softlang/client?view=markup
https://github.com/101companies/101implementations/blob/master/gwtTree/src/org/softlang/server?view=markup
http://101companies.org/index.php/101feature:Company
http://101companies.org/index.php/101feature:Company
http://101companies.org/index.php/Category:user interface
http://101companies.org/index.php/asynchronous communication
https://github.com/101companies/101implementations/blob/master/gwtTree/src/org/softlang/client/interfaces?view=markup
http://101companies.org/index.php/Category:Serialization
https://github.com/101companies/101implementations/blob/master/gwtTree/src/org/softlang/client/guiinfo?view=markup
https://github.com/101companies/101implementations/blob/master/gwtTree/src/org/softlang/client/guiinfo/tree?view=markup
http://101companies.org/index.php/GUI
https://github.com/101companies/101implementations/blob/master/gwtTree/src/org/softlang/client?view=markup
https://github.com/101companies/101implementations/blob/master/gwtTree/src/org/softlang/client/GwtTree.java?view=markup
https://github.com/101companies/101implementations/blob/master/gwtTree/src/org/softlang/client/CompanyPanel.java?view=markup
https://github.com/101companies/101implementations/blob/master/gwtTree/src/org/softlang/client/DepartmentPanel.java?view=markup
https://github.com/101companies/101implementations/blob/master/gwtTree/src/org/softlang/client/DepartmentPanel.java?view=markup
https://github.com/101companies/101implementations/blob/master/gwtTree/src/org/softlang/client/EmployeePanel.java?view=markup
https://github.com/101companies/101implementations/blob/master/gwtTree/src/org/softlang/client/TreePanel.java?view=markup
https://github.com/101companies/101implementations/blob/master/gwtTree/src/org/softlang/client/ButtonPanel.java?view=markup
http://101companies.org/index.php/Category:101implementation
http://101companies.org/index.php/Technology:Eclipse
http://www.eclipse.org/downloads/
http://code.google.com/intl/de-DE/eclipse/docs/download.html
http://101companies.org/index.php/Category:web application
http://101companies.org/index.php/Technology:Eclipse

www.manaraa.com

CHAPTER 5. IMPLEMENTATIONS 79

5.10 101implementation seam

5.10.1 Intent
Web application development with Java and the Seam framework

5.10.2 Languages
• Java

• HQL

• XHTML

• SQL

• XML

• JavaScript (generated)

5.10.3 Technologies
• Seam

• JBoss Application Server

• Eclipse

5.10.4 Features
• Company

• Total

• Cut

• Client-server

• Navigation

• Persistence

• Access control

• Web UI

5.10.5 Motivation
Seam provides a great support for the development of web applications in Java with easy
access control and an integrated persistence layer. It combines the popular JSF (please visit
101implementation jsf for more information) approach for UI programming with Hibernate
and JPA. Both persistence technologies are directly integrated into the web-application
framework.

http://101companies.org/index.php/101implementation:seam
http://101companies.org/index.php/Category:Web application
http://101companies.org/index.php/Language:Java
http://101companies.org/index.php/Category:Web-application framework
http://101companies.org/index.php/Language:Java
http://101companies.org/index.php/Language:HQL
http://101companies.org/index.php/Language:XHTML
http://101companies.org/index.php/Language:SQL
http://101companies.org/index.php/Language:XML
http://101companies.org/index.php/Language:JavaScript
http://101companies.org/index.php/Technology:JBoss Application Server
http://101companies.org/index.php/Technology:Eclipse
http://101companies.org/index.php/101feature:Company
http://101companies.org/index.php/101feature:Total
http://101companies.org/index.php/101feature:Cut
http://101companies.org/index.php/101feature:Client-server
http://101companies.org/index.php/101feature:Navigation
http://101companies.org/index.php/101feature:Persistence
http://101companies.org/index.php/101feature:Access control
http://101companies.org/index.php/101feature:Web UI
http://101companies.org/index.php/Category:Web application
http://101companies.org/index.php/Language:Java
http://101companies.org/index.php/101feature:Access control
http://101companies.org/index.php/101implementation:jsf
http://101companies.org/index.php/Category:User interface
http://101companies.org/index.php/Technology:Hibernate
http://101companies.org/index.php/Technology:JPA
http://101companies.org/index.php/Category:Persistence_technology
http://101companies.org/index.php/Category:Web-application framework
http://101companies.org/index.php/Category:Web-application framework

www.manaraa.com

CHAPTER 5. IMPLEMENTATIONS 80

5.10.6 Illustration
Seam is based on the three-tier architecture. Since the presentation is covered by JSF, the
focus of the Seam framework is the business and data access layer. This section illustrates
the major components of the Seam framework and introduces its rights management.

Presentation

The presentation layer is based on the MVC architecture, because it is the main architecture
of the JSF framework. From this it follows, that the view consists of Facelets. We will start
our presentation illustration with the first page of the application: the company view. It
contains four parts, at which there are two textfields for the name and the total of the
company and two buttons for the department list and the cut of the company. In theory, the
view is designed to show more than one company, but this is not demanded by the feature
model.

Listing 5.41: listAllCompanies.xhtml
1 ...
2

3 <!-- ’c’ is mapped to the field ’allCompanies’ contained
in the CompanyAction.java. -->

4 <rich:dataTable value="#{allCompanies}" var="c" width="
300px">

5 <rich:column>
6 <f:facet name="header">Name</f:facet>
7 <!-- The field displays the name of the company.

-->
8 <h:outputText value="#{c.name}" />
9 </rich:column>

10 <rich:column>
11 <f:facet name="header">Total salaries</f:facet>
12 <!-- The field displays the total value of the

company. -->
13 <h:outputText value="#{c.total()}" />
14 </rich:column>
15 <rich:column>
16 <!-- This button opens the view for all

departments contained by the company. -->
17 <s:button value="Show details" action="#{

companyAction.showDetails()}" />
18 </rich:column>
19 <rich:column>
20 <!-- This is the cut button for the company. -->
21 <s:button value="Cut salaries" action="#{

companyAction.cutSalaries()}" />
22 </rich:column>
23 </rich:dataTable>
24

25 ...

http://101companies.org/index.php/Three-tier architecture
http://101companies.org/index.php/Technology:Facelets
https://github.com/101companies/101implementations/blob/master/seam/view/listAllCompanies.xhtml

www.manaraa.com

CHAPTER 5. IMPLEMENTATIONS 81

The <rich:dataTable ...> ... </rich:dataTable> tags create a new
HTML table with a predefined width="300px". The value "#allCompanies"maps
the table rows to the allCompanies list contained in the class CompanyAction.java.
Each entry has a corresponding table row. The attribute var="c" helps to access one
object of the list and get its informations. As mentioned above, the table has four columns:
name, total, detail button and cut button. Each column is created by the use of the tags
<rich:column> ... </rich:column>. The methods of the class Company-
Action.java are directly accessed via the actions of the buttons, for example in <s:button
value="Cut salaries" action="#companyAction.cutSalaries()"/>.
CompanyAction.java is a Java Bean, which receives the requests of the facelets.
The following example illustrates the cutSalaries()method implemented by the class
CompanyAction.java:

Listing 5.42: CompanyAction.java
1 ...
2

3 public String cutSalaries() {
4 try {
5 // The method cuts the salaries for the selected

company.
6 companyService.cutSalaries(selectedCompany);
7 // If the call is successful, a corresponding

message is displayed.
8 facesMessages.add(FacesMessage.SEVERITY_INFO, "

The cut salary operation was successfully
applied.");

9 }
10 catch(Exception e) {
11 // If an exception occures, an error message is

displayed.
12 facesMessages.add(FacesMessage.SEVERITY_ERROR, "

Error when trying to cut salaries. " + e.
getMessage());

13 e.printStackTrace();
14 }
15 // The framework expects a view name for loading the

next view. If this name is ’null’, the current
view will reloads.

16 return null;
17 }
18

19 ...

The action invokes the cutSalaries(selectedCompany) method of the Compa-
nyService.java and additionaly manages the loading of further pages. If an exception
occurs, it returns an error message to the facelet. The null return value simply means,
that the current view has to be reloaded.

http://101companies.org/index.php/Language:HTML
https://github.com/101companies/101implementations/blob/master/seam/src/hot/org/softlang/web/CompanyAction.java?view=markup
https://github.com/101companies/101implementations/blob/master/seam/src/hot/org/softlang/web/CompanyAction.java?view=markup
https://github.com/101companies/101implementations/blob/master/seam/src/hot/org/softlang/web/CompanyAction.java?view=markup
https://github.com/101companies/101implementations/blob/master/seam/src/hot/org/softlang/web/CompanyAction.java?view=markup
http://101companies.org/index.php/Technology:Java Bean
https://github.com/101companies/101implementations/blob/master/seam/src/hot/org/softlang/web/CompanyAction.java?view=markup
https://github.com/101companies/101implementations/blob/master/seam/src/hot/org/softlang/web/CompanyAction.java
https://github.com/101companies/101implementations/blob/master/seam/src/main/org/softlang/services/CompanyService.java?view=markup
https://github.com/101companies/101implementations/blob/master/seam/src/main/org/softlang/services/CompanyService.java?view=markup
http://101companies.org/index.php/Technology:Facelets

www.manaraa.com

CHAPTER 5. IMPLEMENTATIONS 82

Business and Data access

The business layer manages the access control of the application. In addition, it is con-
nected to the persistence layer, which is implemented with JPA. On cut, the following
method of the service class CompanyService.java is invoked:

Listing 5.43: CompanyService.java
1 ...
2

3 // The annotation manages the access control for this
method.

4 @Restrict("#{s:hasRole(’admin’)}")
5 public void cutSalaries(Company company) {
6 company.cut();
7 entityManager.merge(company);
8 }
9

10 ...

A simple annotation @Restrict provides access controll for the different users. The
annotated method is restricted to a user or a group of users, in this case to the ”admin”
user. The cut is performed within the company object directly. The entityManager
manages the company entities and provides an easy merge mechanism for all contained
entities. In this case all manipulated employees of this company are merged automatically
without explicit call.

5.10.7 Architecture
• The Facelets defining the view are located in the folder [view]. The folder contains

layout templates, images and style sheets as well, which are provided directly by the
Seam web-application framework.

• The Java bean CompanyAction.java is located in web and provides the connection
point to the business layer.

• The entity classes for the company are located in the model package.

• The Seam service class is located in the services package.

There are some necessary configuration files like the build.xml and the build.properties.
Apart from that, everything else is generated or part of the libraries.

5.10.8 Usage
This application requires the Eclipse and JBoss Application Server (Version 4.2.x). After
downloading and installing both, follow these steps:

• Import the seam project from your file system to Eclipse as a java project.

• Change the build.properties file located in the projects base folder. The jboss.home-
property must refer to your JBoss Application Server location: jboss.home = <your
JBoss location>.

http://101companies.org/index.php/101feature:Access control
http://101companies.org/index.php/Technology:JPA
https://github.com/101companies/101implementations/blob/master/seam/src/main/org/softlang/services/CompanyService.java?view=markup
https://github.com/101companies/101implementations/blob/master/seam/src/main/org/softlang/service/CompanyService.java
http://101companies.org/index.php/Category:Annotation
http://101companies.org/index.php/101feature:Access control
http://101companies.org/index.php/Technology:Facelets
https://github.com/101companies/101implementations/blob/master/seam/view?view=markup
http://101companies.org/index.php/Language:CSS
http://101companies.org/index.php/Category:Web-application framework
http://101companies.org/index.php/Technology:Java Bean
https://github.com/101companies/101implementations/blob/master/seam/src/hot/org/softlang/web/CompanyAction.java?view=markup
https://github.com/101companies/101implementations/blob/master/seam/src/hot/org/softlang/web?view=markup
https://github.com/101companies/101implementations/blob/master/seam/src/main/org/softlang/model?view=markup
https://github.com/101companies/101implementations/blob/master/seam/src/main/org/softlang/services?view=markup
http://101companies.org/index.php/Category:Library
http://101companies.org/index.php/Technology:Eclipse
http://101companies.org/index.php/Technology:JBoss Application Server
http://101companies.org/index.php/Technology:Eclipse
https://github.com/101companies/101implementations/blob/master/seam/build.properties?view=markup
http://101companies.org/index.php/Technology:JBoss Application Server

www.manaraa.com

CHAPTER 5. IMPLEMENTATIONS 83

• Run the seam project as ant build in eclipse (Right click on the build.xml file→ Run As
→ Ant Script).

• Start JBoss using either <your JBoss location>/bin/run.bat for Windows OS or <your
JBoss location>/bin/run.sh for Unix OS.

• Start a Web browser and go to http://localhost:8080/seam

It is possible to access the system with two different users: ”admin” (Password: ”admin”)
and ”user” (Password: ”user”). If you are logged in as ”admin”, you are allowed to visit
all departments and employees contained in the company and cut all salaries. If you are
logged in as ”user”, you are only allowed to visit all elements of the company but not to
cut salaries.

http://101companies.org/index.php/Category:Web browser

www.manaraa.com

CHAPTER 5. IMPLEMENTATIONS 84

5.11 101implementation strutsAnnotation

5.11.1 Intent
Web programming in Java with Apache Struts configuring with annotations

5.11.2 Languages
• Java

• XML

• HTML

• CSS

5.11.3 Technologies
• Apache Struts

• Java Servlet container (for example: Apache Tomcat)

• Web browser

• Apache Maven

5.11.4 Features
• Company

• Total

• Cut

• Client-server

• Navigation

• Web UI

5.11.5 Motivation
This Java web application illustrates the use of the popular Apache Struts technology in
combination with JSP and a servlet based web server. It introduces the use of Apache
Maven as a good advantage for Java based applications, as well.

http://101companies.org/index.php/101implementation:strutsAnnotation
http://101companies.org/index.php/Web programming
http://101companies.org/index.php/Language:Java
http://101companies.org/index.php/Language:Java
http://101companies.org/index.php/Language:XML
http://101companies.org/index.php/Language:HTML
http://101companies.org/index.php/Language:CSS
http://101companies.org/index.php/Language:Java
http://101companies.org/index.php/Technology:Servlet API
http://101companies.org/index.php/Technology:Apache Tomcat
http://101companies.org/index.php/Category:Web browser
http://101companies.org/index.php/Technology:Apache Maven
http://101companies.org/index.php/101feature:Company
http://101companies.org/index.php/101feature:Total
http://101companies.org/index.php/101feature:Cut
http://101companies.org/index.php/101feature:Client-server
http://101companies.org/index.php/101feature:Navigation
http://101companies.org/index.php/101feature:Web UI
http://101companies.org/index.php/Language:Java
http://101companies.org/index.php/Category:Web application
http://101companies.org/index.php/Technology:JSP
http://101companies.org/index.php/Technology:Servlet API
http://101companies.org/index.php/Category:Web server
http://101companies.org/index.php/Technology:Apache Maven
http://101companies.org/index.php/Technology:Apache Maven
http://101companies.org/index.php/Language:Java
http://101companies.org/index.php/Category:Application

www.manaraa.com

CHAPTER 5. IMPLEMENTATIONS 85

5.11.6 Illustration
The Apache Struts architecture is based on MVC. The view is implemented with JSP,
the controller is based on Java action classes in combination with servlets and the model
is provided by a service class and a class for each company, department and employee.
The initial company data is stored in a [this!!src/main/resources/sampleCompany.ser seri-
alization file] (compare 101implementation javaInheritance). We will illustrate the Apache
Struts implementation with an example of showing and cutting a company.

View

The JSP [this!!src/main/webapp/WEB-INF/content/list-all-companies.jsp file] for the view
of the company offers two textfields and two buttons. One of the textfields shows the
name, the other one shows the total value. The buttons allow the user to request for further
detailed information like a department list. It also allows her to cut all salaries of the
company.

Listing 5.44: list-all-companies.jsp
1 ...
2

3 <s:form action="company">
4

5 ...
6

7 <s:iterator value="allCompanies">
8 <tr>
9 <!-- The name and total fields refer

10 to the corresponding getters of "
Company.java". -->

11 <td><s:property value="name"/></td>
12 <td><s:property value="total"/></td>
13 <td>
14 <!-- These lines create a link,
15 which invokes the cutSalaries-

method of "CompanyAction.java
-->

16 <s:url id="cutURL" action="company.
cutSalaries">

17 <s:param name="id" value="%{id}"
/>

18 </s:url>
19 <s:a href="%{cutURL}">Cut</s:a>
20 </td>
21 <td>
22 <!-- These lines create a link
23 to the department list of the

company. -->
24 <s:url id="detailURL" action="

company.details">

http://101companies.org/index.php/Technology:JSP
http://101companies.org/index.php/Language:Java
http://101companies.org/index.php/Category:Class
http://101companies.org/index.php/Technology:Servlet API
http://101companies.org/index.php/Category:Class
http://101companies.org/index.php/101feature:Company
http://101companies.org/index.php/101implementation:javaInheritance
http://101companies.org/index.php/Technology:JSP
http://101companies.org/index.php/101feature:Total
https://github.com/101companies/101implementations/blob/master/strutsAnnotation/src/main/webapp/WEB-INF/content/list-all-companies.jsp

www.manaraa.com

CHAPTER 5. IMPLEMENTATIONS 86

25 <s:param name="id" value="%{id}"
/>

26 </s:url>
27 <s:a href="%{detailURL}">Detail</s:a

>
28 </td>
29 </tr>
30 </s:iterator>
31

32 ...

The iterator <s:iterator ... /> creates a table row for each company listed in
the ListAllCompaniesAction.java instance. The value "allCompanies" refers to the
member List<Company> allCompanies; of the class. Each company within this
list has a getter for its name and another for the total value.

Controller

The action="company.cutSalaries" of the cut link invokes the cutSalaries()
method of CompanyAction.java, which is, in combination with a servlet, a controller of
the application:

Listing 5.45: CompanyAction.java
1 @Action(value = "company.cutSalaries",
2 results = { @Result(name = "listAllCompanies

", type="redirectAction", location="list-
all-companies")})

3 public String cutSalaries() {
4 company = CompanyService.instance().findCompany(

Long.parseLong(RequestUtil.getRequestParameter("
id")));

5 company.cut();
6 return "listAllCompanies";
7 }

The @Action(value = "company.cutSalaries", ...) maps this method to
the action name company.cutSalaries. Whenever this name is called within an action of
the JSP files, this method is invoked. CompanyService.instance() returns the
instance of the model, which returns the necessary entity for the company. This object
is used to perform the companies cut method. The results parameter redirects the
application to the [this!!src/main/webapp/WEB-INF/content/list-all-companies.jsp list-all-
companies.jsp], which simply means, that the page is reloaded. Every result entry refers
to a returned string value of the @Action(value = "company.cutSalaries",
...). In this case, there is only one possible return value.

Model

All data are instantiated within the Singleton CompanyService.java, which is considered
as a major part of the model. The instance contains lists of the company, its departments

https://github.com/101companies/101implementations/blob/master/strutsAnnotation/src/main/java/org/softlang/actions/ListAllCompaniesAction.java?view=markup
http://101companies.org/index.php/Category:Class
http://101companies.org/index.php/101feature:Total
http://101companies.org/index.php/101feature:Cut
https://github.com/101companies/101implementations/blob/master/strutsAnnotation/src/main/java/org/softlang/actions/CompanyAction.java?view=markup
http://101companies.org/index.php/Technology:Servlet API
https://github.com/101companies/101implementations/blob/master/strutsAnnotation/src/main/java/org/softlang/actions/CompanyAction.java
http://101companies.org/index.php/Technology:JSP
http://101companies.org/index.php/101feature:Cut
http://101companies.org/index.php/Method
http://101companies.org/index.php/Singleton
https://github.com/101companies/101implementations/blob/master/strutsAnnotation//src/main/java/org/softlang/services/CompanyService.java?view=markup

www.manaraa.com

CHAPTER 5. IMPLEMENTATIONS 87

and its employees. As we have seen in the controller description, the cut method of all of
these entities is invokeable. In our case, the cut method for the company simply invokes
the cut method of the departments:

Listing 5.46: Company.java
1 public void cut() {
2 for (Department d : getDepts())
3 d.cut();
4 }

The lists within this CompanyService.java are initialized by loading a previously serial-
ized company. We strongly recommend to have a look on 101implementation javaInheri-
tance, to get an overview over the serialization and deserialization process in Java.

5.11.7 Architecture
• The JSP files for the view are located in content.

• The index.jsp in the webapp folder represents the initial page, which redirects to the
first list-all-companies.jsp. The webapp folder also contains the CSS files for this ap-
plication.

• The resources folder contains two necessary files. The sampleCompany.ser provides
the serialized company data. The struts.xml XML file defines, that the initial page of
this application is the index.jsp.

• The main Java code of the application is located in softlang. We have four folders for
the different concerns. actions contains the actions described in the illustration section
for the controller. The basics folder contains all necessary classes for the deserialized
company. The CompanyService.java is located in the services folder. The last folder
util contains some helpful Java files for the deserialization.

5.11.8 Usage
Requirements:

• Apache Maven (Version 2.x) as Eclipse plugin (http://eclipse.org/m2e/download/) or
standalone (http://maven.apache.org/download.html)

• Web server or application server based on the servlet technology (We recommend JBoss
application server, but Apache Tomcat will also be sufficient).

Import (Eclipse only): Import the strutsAnnotation implementation into eclipse as Maven
project:

• Click the ”File”-button in the menu bar and ”Import...”.

• Select the ”Maven” folder and ”Existing Maven Projects”.

• Browse to your local ”strutsAnnotation” folder and ”Finish”.

Build:

• Run ”mvn clean” and ”mvn install” in the root directory of the struts 2 implementation
or (Eclipse only) right click on your imported project and first click ”Run As”→ ”Maven
clean” and second ”Run As”→ ”Maven install”.

http://101companies.org/index.php/101feature:Cut
https://github.com/101companies/101implementations/blob/master/strutsAnnotation/src/main/java/org/softlang/basics/Company.java
https://github.com/101companies/101implementations/blob/master/strutsAnnotation//src/main/java/org/softlang/services/CompanyService.java?view=markup
http://101companies.org/index.php/101implementation:javaInheritance
http://101companies.org/index.php/101implementation:javaInheritance
http://101companies.org/index.php/Language:Java
http://101companies.org/index.php/Technology:JSP
https://github.com/101companies/101implementations/blob/master/strutsAnnotation/src/main/webapp/WEB-INF/content?view=markup
https://github.com/101companies/101implementations/blob/master/strutsAnnotation/src/main/webapp/index.jsp?view=markup
https://github.com/101companies/101implementations/blob/master/strutsAnnotation/src/main/webapp?view=markup
https://github.com/101companies/101implementations/blob/master/strutsAnnotation/src/main/webapp?view=markup
http://101companies.org/index.php/Language:CSS
https://github.com/101companies/101implementations/blob/master/strutsAnnotation/src/main/resources?view=markup
https://github.com/101companies/101implementations/blob/master/strutsAnnotation/src/main/resources/sampleCompany.ser?view=markup
https://github.com/101companies/101implementations/blob/master/strutsAnnotation/src/main/resources/struts.xml?view=markup
http://101companies.org/index.php/Language:XML
https://github.com/101companies/101implementations/blob/master/strutsAnnotation/src/main/webapp/index.jsp?view=markup
http://101companies.org/index.php/Language:Java
https://github.com/101companies/101implementations/blob/master/strutsAnnotation/src/main/java/org/softlang?view=markup
https://github.com/101companies/101implementations/blob/master/strutsAnnotation/src/main/java/org/softlang/actions?view=markup
https://github.com/101companies/101implementations/blob/master/strutsAnnotation/src/main/java/org/softlang/basics?view=markup
http://101companies.org/index.php/Category:Class
https://github.com/101companies/101implementations/blob/master/strutsAnnotation/src/main/java/org/softlang/services/CompanyService.java?view=markup
https://github.com/101companies/101implementations/blob/master/strutsAnnotation/src/main/java/org/softlang/services?view=markup
https://github.com/101companies/101implementations/blob/master/strutsAnnotation/src/main/java/org/softlang/util?view=markup
http://101companies.org/index.php/Language:Java
http://101companies.org/index.php/Technology:Apache Maven
http://101companies.org/index.php/Technology:Eclipse
http://101companies.org/index.php/Category:Web server
http://101companies.org/index.php/Category:Application server
http://101companies.org/index.php/Technology:Servlet API
http://101companies.org/index.php/Technology:JBoss Application Server
http://101companies.org/index.php/Technology:JBoss Application Server
http://101companies.org/index.php/Technology:Apache Tomcat
http://101companies.org/index.php/Technology:Apache Maven

www.manaraa.com

CHAPTER 5. IMPLEMENTATIONS 88

• Copy the target/struts2app.war file to the web-application folder of your Web server
(JBoss application server: <JBossHome>/server/default/deploy).

Run:

• Start your Web server (JBoss application server: <JBossHome>/bin/run.bat (Windows)
or <JBossHome>/bin/run.sh (Unix)).

• Start your Web browser and go to http://localhost:8080/struts2app.

http://101companies.org/index.php/Category:Web server
http://101companies.org/index.php/Technology:JBoss Application Server
http://101companies.org/index.php/Category:Web server
http://101companies.org/index.php/Technology:JBoss Application Server
http://101companies.org/index.php/Category:Web browser

www.manaraa.com

CHAPTER 5. IMPLEMENTATIONS 89

5.12 101implementation silverlight

5.12.1 Intent
Web programming in C# with Silverlight

5.12.2 Languages
• CSharp (C#): Programming language used for all code (Version 4.0)

5.12.3 Technologies
• csc.exe: C# compiler (Version 4.0)

• .NET: Framework used to execute compiled code (Version 4.0)

• Silverlight: (Version 4.0) used for the client-side

5.12.4 Features
• Company

• Total

• Cut

• Client-server

• Navigation

• Web UI

5.12.5 Motivation
The implementation illustrates the development of a client-side user interface accessible
via web browser. We used Silverlight in combination with the Navigation framework n to
create an MVC based implementation. The web application is tied to a web service, which
is implemented in 101implementation wcf. An advantage of Silverlight is the out-of-the-
box back button support.

5.12.6 Illustration
There have to be proxy DTOs enabling the client to receive the serialized data from the
web service. These proxies are generated from a WSDL file. The namespace for the
generated classes is silverlight.CompanyServiceReference. These proxies
are CSharp classes located in [this!silverlight/Service References/CompanyServiceRefer-
ence/Reference.cs]:

http://101companies.org/index.php/101implementation:silverlight
http://101companies.org/index.php/Web programming
http://101companies.org/index.php/Language:CSharp
http://101companies.org/index.php/Language:CSharp
http://101companies.org/index.php/Technology:csc.exe
http://101companies.org/index.php/Technology:.NET
http://101companies.org/index.php/101feature:Company
http://101companies.org/index.php/101feature:Total
http://101companies.org/index.php/101feature:Cut
http://101companies.org/index.php/101feature:Client-server
http://101companies.org/index.php/101feature:Navigation
http://101companies.org/index.php/101feature:Web UI
http://101companies.org/index.php/Category:Client
http://101companies.org/index.php/Category:User interface
http://101companies.org/index.php/Category:Web browser
http://101companies.org/index.php/Technology:Navigation framework
http://msdn.microsoft.com/en-us/library/cc838245(v=vs.95).aspx#application_navigatio
http://101companies.org/index.php/Category:Web application
http://101companies.org/index.php/Category:Web service
http://101companies.org/index.php/101implementation:wcf
http://101companies.org/index.php/Category:Client
http://101companies.org/index.php/Category:Web service
http://101companies.org/index.php/Language:WSDL
http://101companies.org/index.php/Language:CSharp

www.manaraa.com

CHAPTER 5. IMPLEMENTATIONS 90

Listing 5.47: Reference.cs
1 namespace silverlight.CompanyServiceReference {
2 using System.Runtime.Serialization;
3

4 // The class "CompanyDto" is the proxy DTO for
serialized company data.

5 [System.Diagnostics.DebuggerStepThroughAttribute()]
6 [System.CodeDom.Compiler.GeneratedCodeAttribute("

System.Runtime.Serialization", "4.0.0.0")]
7 [System.Runtime.Serialization.DataContractAttribute(

Name="CompanyDto", Namespace="http://schemas.
datacontract.org/2004/07/wcf.Dto")]

8 public partial class CompanyDto : object, System.
ComponentModel.INotifyPropertyChanged {

9

10 ...
11

12 }
13

14 ...
15

16 // The connection point to the company service
provided by the wcf implementation.

17 [System.Diagnostics.DebuggerStepThroughAttribute()]
18 [System.CodeDom.Compiler.GeneratedCodeAttribute("

System.ServiceModel", "4.0.0.0")]
19 public partial class CompanyServiceClient : System.

ServiceModel.ClientBase<silverlight.
CompanyServiceReference.ICompanyService>,
silverlight.CompanyServiceReference.
ICompanyService {

20

21 ...
22

23 }
24

25 ...
26

27 }

GUI

The proxy in combination with the CompanyServiceClient allows us to create an
asynchronous communication asynchronous request.

Listing 5.48: Home.xaml.cs
1 // Create a service client for companies and ...
2 var client = new CompanyServiceClient();

https://github.com/101companies/101implementations/blob/master/silverlight/silverlight/Service References/CompanyServiceReference/Reference.cs
http://101companies.org/index.php/asynchronous communication
https://github.com/101companies/101implementations/blob/master/silverlight/silverlight/Home.xaml.cs

www.manaraa.com

CHAPTER 5. IMPLEMENTATIONS 91

3 client.GetCompanyCompleted += client_GetCompanyCompleted
;

4 // ... wait for the requested company.
5 client.GetCompanyAsync();

The illustrated code creates a service client and waits, until the company data are com-
pletely delivered to the client. The result is a DTO, which is stored in the DataContext:

Listing 5.49: Home.xaml.cs
1 void client_GetCompanyCompleted(object sender,

GetCompanyCompletedEventArgs e)
2 {
3 DataContext = e.Result;
4 }

We are now able to fill the GUI with the help of the DataContext. Each field of the
DTO is automatically binded to the GUI defined by the XAML files by using binding
properties. For example, the Home.xaml contains a field txtCompanyName binded to
the field Name of the DTO.

Listing 5.50: Home.xaml
1 <TextBlock Height="23" HorizontalAlignment="Left" Margin

="59,46,0,0" Name="txtCompanyName" Text="{Binding
Name}"

5.12.7 Architecture
The project is represented as two Visual Studio projects:

• silverlight.Web contains the generated bootstrap code for launching the silverlight appli-
cation.

• silverlight contains the actual implementation. The WSDL file and the generated DTO
proxies are located in the folder silverlight/ServiceReferences/CompanyServiceRefer-
ence. The GUI is provided by XAML files located in the base folder of the project.

5.12.8 Usage
• Follow the Usage section for the 101implementation wcf to create a WCF service.

• Build the project using Visual Studio.

• Open the silverlightTestPage.html from silverlight.Web folder.

https://github.com/101companies/101implementations/blob/master/silverlight/silverlight/Home.xaml.cs
http://101companies.org/index.php/GUI
http://101companies.org/index.php/Language:XAML
https://github.com/101companies/101implementations/blob/master/silverlight/silverlight/Home.xaml?view=markup
https://github.com/101companies/101implementations/blob/master/silverlight/silverlight/Home.xaml
http://101companies.org/index.php/Language:WSDL
http://101companies.org/index.php/GUI
http://101companies.org/index.php/Language:XAML
http://101companies.org/index.php/101implementation:wcf
https://github.com/101companies/101implementations/blob/master/silverlight/silverlight.Web/silverlightTestPage.html?view=markup

www.manaraa.com

CHAPTER 5. IMPLEMENTATIONS 92

5.13 101implementation wcf

5.13.1 Intent
WCF Web service implementation in .NET 4.0

5.13.2 Languages
• CSharp (C#)

• XML

• WSDL

5.13.3 Technologies
• csc.exe

• .NET

• WCF

• IIS

• SOAP

• ASP .NET

5.13.4 Features
• Company

• Total

• Cut

• Client-server

5.13.5 Motivation
The WCF technology supports the development of applications based on service-oriented
architecture. Our implementation illustrates a stateful web service created with WCF. It
also introduces the use of SOAP over HTTP. That necessitates the use of DTOs to wrap
the domain model into leightweight serializable containers and pass it to the client.

http://101companies.org/index.php/101implementation:wcf
http://101companies.org/index.php/Category:Web service
http://101companies.org/index.php/Technology:.NET
http://101companies.org/index.php/Language:CSharp
http://101companies.org/index.php/Language:XML
http://101companies.org/index.php/Language:WSDL
http://101companies.org/index.php/Technology:csc.exe
http://101companies.org/index.php/Technology:.NET
http://101companies.org/index.php/Technology:IIS
http://101companies.org/index.php/Technology:SOAP
http://101companies.org/index.php/Technology:ASP .NET
http://101companies.org/index.php/101feature:Company
http://101companies.org/index.php/101feature:Total
http://101companies.org/index.php/101feature:Cut
http://101companies.org/index.php/101feature:Client-server
http://101companies.org/index.php/service-oriented architecture
http://101companies.org/index.php/service-oriented architecture
http://101companies.org/index.php/Stateful
http://101companies.org/index.php/Category:Web service
http://101companies.org/index.php/Technology:SOAP
http://101companies.org/index.php/Technology:HTTP
http://101companies.org/index.php/DTO

www.manaraa.com

CHAPTER 5. IMPLEMENTATIONS 93

5.13.6 Illustration
WCF uses contracts to generate WSDL definitions for the web service. The contract is pro-
vided by a CSharp interface. It contains all necessary methods for retreiving the company
data and invoking the method cut on every entity within the company:

Listing 5.51: ICompanyService.cs
1 [ServiceContract]
2 public interface ICompanyService
3 {
4 // The following methods define the interface for

data retrieval.
5 [OperationContract]
6 CompanyDto GetCompany();
7

8 [OperationContract]
9 DepartmentDetailsDto GetDepartmentDetails(Guid id);

10

11 [OperationContract]
12 EmployeeDto GetEmployee(Guid id);
13

14 // The following methods define the interface for
performing cut on each entity.

15 [OperationContract]
16 decimal CutDept(DepartmentDetailsDto dept);
17

18 [OperationContract]
19 decimal CutEmpl(EmployeeDto emp);
20

21 [OperationContract]
22 decimal Cut(CompanyDto company);
23 }

The class CompanyService is the concrete contract implementation. The implementa-
tion uses the basic 101implementation csharp for data generation and manipulation. Our
contract class invokes the methods of the implementation and creates DTOs out of the
retrieved entities. The example shows the implementation of the method GetCompany.
The method returns all necessary data for the company view encapsulated into a DTO:

Listing 5.52: CompanyService.svc.cs
1 [AspNetCompatibilityRequirements(RequirementsMode =

AspNetCompatibilityRequirementsMode.Required)]
2 [ServiceBehavior(InstanceContextMode =

InstanceContextMode.Single)]
3 public class CompanyService : ICompanyService
4 {
5

6 ...
7

http://101companies.org/index.php/Language:WSDL
http://101companies.org/index.php/Category:Web service
http://101companies.org/index.php/Language:CSharp
https://github.com/101companies/101implementations/blob/master/wcf/ICompanyService.cs
http://101companies.org/index.php/101implementation:csharp
https://github.com/101companies/101implementations/blob/master/CompanyService.svc.cs

www.manaraa.com

CHAPTER 5. IMPLEMENTATIONS 94

8 // The concrete method implementation creates the
DTO for a company using the data provided in the
baseline csharp implementation.

9 public CompanyDto GetCompany()
10 {
11 var dto = new CompanyDto
12 {
13

14 // The DTO is filled with ID, Name and
subdepartments.

15 Id = Company.Id,
16 Name = Company.Name,
17 Departments = Company.Departments.Select(d

=> new DepartmentDto
18 {
19

20 // The data for each department are
included iteratively.

21 Details = new DepartmentDetailsDto
22 {
23 Id = d.Id,
24 Name = d.Name,
25 Manager = new EmployeeDto
26 {
27 // Every Manager has its id,

address, name and salary.
28 Address = d.Manager.Person.

Address,
29 Id = d.Manager.Id,
30 Name = d.Manager.Person.Name,
31 Salary = d.Manager.Salary
32 }
33

34 },
35

36 // The data for each employee are
included iteratively.

37 Employees = d.Employees.Select(e => new
EmployeeDto

38 {
39 // Every Manager has its id, address

, name and salary.
40 Id = e.Id,
41 Address = e.Person.Address,
42 Name = e.Person.Name,
43 Salary = e.Salary
44 }).ToList(),
45

46 SubDepartments = FillSubDepartments(d),

www.manaraa.com

CHAPTER 5. IMPLEMENTATIONS 95

47 }).ToList(),
48

49 // The parameter "Total" is filled.
50 Total = Company.Total
51 };
52

53 return dto;
54 }
55

56 ...
57

58 }
59 </syntaxhighlight >
60 The DTO classes <syntaxhighlight lang="csharp" enclose="

none">CompanyDto

, DepartmentDetailsDto, and EmployeeDto provide the serializability for view
informations. The following example illustrates the DTO of the company, which contains
fields for identifier, name, subdepartments and Total.

Listing 5.53: CompanyDto.cs
1 [ServiceContract]
2 [DataContract]
3 public class CompanyDto
4 {
5 // Identifier
6 [DataMember]
7 public Guid Id { get; set; }
8

9 // Name
10 [DataMember]
11 public string Name { get; set; }
12

13 // Subdepartments
14 [DataMember]
15 public List<DepartmentDto> Departments { get; set; }
16

17 // Total value
18 [DataMember]
19 public decimal Total { get; set; }
20 }

5.13.7 Architecture
The base folder contains the contract definition ICompanyService.cs and the contract
implementation ComanyService.svc.cs. The file CompanyService.svc links to the con-
crete implementation. DTO definitions are located in the dto folder. Both files, clientac-
cesspolicy.xml and crossdomain.xml, solve possible cross-domain issues. The .config

http://101companies.org/index.php/101feature:Total
https://github.com/101companies/101implementations/blob/master/wcf/Dto/CompanyDto.cs
https://github.com/101companies/101implementations/blob/master/wcf/ICompanyService.cs?view=markup
https://github.com/101companies/101implementations/blob/master/wcf/CompanyService.svc?view=markup
https://github.com/101companies/101implementations/blob/master/wcf/clientaccesspolicy.xml?view=markup
https://github.com/101companies/101implementations/blob/master/wcf/clientaccesspolicy.xml?view=markup
https://github.com/101companies/101implementations/blob/master/wcf/crossdomain.xml?view=markup

www.manaraa.com

CHAPTER 5. IMPLEMENTATIONS 96

files in the base folder are generated.

5.13.8 Usage
Requirements:

• You need Microsoft Windows (preferably Vista or 7) running in combination with .NET
4.0.

• Install IIS (Internet Information Services) 7 or 7.5 using the installation tutorials on IIS]
or [http://msdn.microsoft.com/de-de/library/aa964620.aspx MSDN. Make sure, that you
have installed the ”static content” feature as well.

• Download the wcf implementation from github.

Build:

• Use Visual Studio to build the project.

Create web site:

• Go to the ”Computer Management” dialog.

• Open the ”Services and Applications” root and select the ”Internet Information Services
(IIS) Manager”.

• On the right, there is a panel ”Connections”. Create a new web site by right click on
”web sites”.

• Use wcf as ”sitename” and link to the physical folder of the wcf implementation. Use
port 1212.

Make sure that http://localhost:1212/CompanyService.svc shows that you have created a
service. After the web service is running, continue with your client side application, for
example 101implementation silverlight.
We also used:

• version 4.0 of WCF

• version 4.0 of CSharp

• and version 4.0 of the csc.exe compiler

to create the implementation.
Attention: When creating a service anywhere other than on the web server, that hosts
your Silverlight application, cross-domain issues can arise. Cross-domain calls between
Silverlight applications and services present a security vulnerability and must be specifi-
cally enabled by an appropriate cross-domain policy. For procedures that describe how to
implement such a policy, see ”Making a Service Available Across Domain Boundaries”
[24].

http://101companies.org/index.php/Technology:.NET
http://101companies.org/index.php/Technology:IIS
http://learn.iis.net/page.aspx/28/installing-iis-on-windows-vista-and-windows-7/
http://learn.iis.net/page.aspx/28/installing-iis-on-windows-vista-and-windows-7/
http://101companies.org/index.php/Technology:Visual Studio
http://101companies.org/index.php/Category:Web service
http://101companies.org/index.php/Category:Client
http://101companies.org/index.php/101implementation:silverlight
http://101companies.org/index.php/Language:CSharp
http://101companies.org/index.php/Technology:csc.exe
http://101companies.org/index.php/Category:Compiler

www.manaraa.com

Chapter 6

Conclusion

We identified a useful method for identifiing a reasonable set of web-programming tech-
nologies by the use of the category ”web-programming framework”. The identified items
contained in the set are well classifiable as web-application framework. We selected a sub-
set of these frameworks based on a founded ranking for implementations in the ”101com-
panies project”. The thesis therefore illustrates implementations of the frameworks JSF,
Zend framework, Pyjamas, Google Web Toolkit, JBoss Seam, Apache Struts and Microsoft
Silverlight (see tab.˜2.9). The frameworks introcude different architectural styles and con-
cepts like Model View Controller or Client-server architecture, but also different technolo-
gies like Facelets or JBoss Application Server.

Although we conclude, that the language-centered approach introduced in the second chap-
ter is not suitable for our purposes, we chosed interesting HTML5 technologies like XML-
HttpRequest, Web storage and IndexedDB as additional interesting technologies for our
project. These technologies are supported by further concepts and technologies like Ajax,
MVC or jQuery. Nevertheless, the language-centered approach leads to technology sets
without reasonable categorization and priorization. The result is difficult to overlook and
we will not continue working on that approach.

We also conclude, that Wikipedia is very helpful to identify a core category for the web-
programming domain. The resulting category ”web-application framework” is widely
used and defineable in a strong way (see sec.˜2.1.1). We checked additional literature
(see sec.˜3) to prove, that the category is a reasonable concept for web-programming (see
sec.˜2.5). The list of remaining web-application frameworks is still long and there are
many important and uncovered concepts and technologies left. For example, the imple-
mented web-application frameworks do not yet cover all web-related languages like Ruby,
Perl, Common Lisp or others (see tab.˜??). Exotic or new concepts are also not necessarily
covered by the identification process. Therefore, the 101companies project needs more
implementations to strengthen up the taxonomy.

Finally, web-application frameworks are very versatile in case of used programming lan-
guages, data exchange concepts and technologies. Although, the most used architecture in
the implementations is MVC, the frameworks also leads to service-oriented or multi-tier ar-
chitecture. The implementations are well documented within our project1. The documen-

1http://101companies.uni-koblenz.de/index.php/101companies:

97

http://101companies.uni-koblenz.de/index.php/101companies:Project
http://101companies.uni-koblenz.de/index.php/101companies:Project

www.manaraa.com

CHAPTER 6. CONCLUSION 98

tation describes, how the different technologies and concepts are organized and thereby
helps to classify each used object.

Project

http://101companies.uni-koblenz.de/index.php/101companies:Project
http://101companies.uni-koblenz.de/index.php/101companies:Project
http://101companies.uni-koblenz.de/index.php/101companies:Project
http://101companies.uni-koblenz.de/index.php/101companies:Project
http://101companies.uni-koblenz.de/index.php/101companies:Project

www.manaraa.com

Appendix A

Terms and Technologies

A.1 Ajax

A.1.1 Intent
Concept for asynchronous requests in web applications

A.1.2 Description
Asynchronous JavaScript + XML [10] or Asynchronous JavaScript and XMLHttpRequest
[30] (AJAX) is a concept for web programming. The core idea is to manipulate page
content (HTML and CSS) instead of reloading the whole page. Hence, the advantage is
a more fluent interaction between user and application. The basic language for Ajax is
JavaScript, the basic technology is XMLHttpRequest. The data exchange is handled via
asynchronous communication.

A.1.3 Technologies
The main parts of AJAX are:

• HTML, XHTML, CSS

• DOM

• XML, JSON, ... (depends on the message format)

• XMLHttpRequest

• JavaScript

A.2 MVC

A.2.1 Intent
An Architectural pattern dedicated to seperate concerns

99

http://101companies.org/index.php/Ajax
http://101companies.org/index.php/asynchronous communication
http://101companies.org/index.php/web programming
http://101companies.org/index.php/Language:HTML
http://101companies.org/index.php/Language:CSS
http://101companies.org/index.php/Language:JavaScript
http://101companies.org/index.php/asynchronous communication
http://101companies.org/index.php/Language:HTML
http://101companies.org/index.php/Language:XHTML
http://101companies.org/index.php/Language:CSS
http://101companies.org/index.php/Technology:DOM
http://101companies.org/index.php/Language:XML
http://101companies.org/index.php/Language:JSON
http://101companies.org/index.php/Language:JavaScript
http://101companies.org/index.php/MVC
http://101companies.org/index.php/Category:Architectural pattern

www.manaraa.com

APPENDIX A. TERMS AND TECHNOLOGIES 100

A.2.2 Discussion
The MVC (Model View Controller) pattern divides a program into three major parts:

• View

• Controller

• Model

The view contains the user interface. The model contains the data. The controller handles
the user input and notifies both the model and the view, if there are any changes in one of
them. If there are changes in the model, the view will collect them directly from the model,
when it gets notified. If there are changes in the view, the controller will delegate this to
the model [3].

A.3 Technology JSF

A.3.1 Intent
Web-application framework for web-based user interfaces with Java EE

A.3.2 Description
”JavaServer Faces (JSF) is a standard Java web-application framework for building user
interfaces for web applications” [30]. In terms of MVC it is focused on the view (JSP,
Facelets), the model (Java Bean) and the controller (provided by the Servlet API). Ajax
is included from version 2.0. JavaServer Faces controls the navigation between different
pages and connects the pages to Java components implemented as Java Bean [30, 26].

A.3.3 Technologies
• Java Bean

• Servlet API

• JSP / Facelets

A.4 Technology Pyjamas

A.4.1 Intent
A Python-Web-application framework for JavaScript-web applications

A.4.2 Description
Pyjamas provides a Python-to-JavaScript compiler, and many other components includ-
ing Ajax and a widget-set library. It is based on the idea of the GWT, which is creating
JavaScript web applications without programming JavaScript code [18].

http://101companies.org/index.php/Category:Pattern
http://101companies.org/index.php/Category:User_interface
http://101companies.org/index.php/Technology:JSF
http://101companies.org/index.php/Category:Web-application framework
http://101companies.org/index.php/Category:User interface
http://101companies.org/index.php/Technology:Java EE
http://101companies.org/index.php/Language:Java
http://101companies.org/index.php/Category:Web-application framework
http://101companies.org/index.php/Category:User interface
http://101companies.org/index.php/Category:User interface
http://101companies.org/index.php/Category:Web application
http://101companies.org/index.php/Technology:JSP
http://101companies.org/index.php/Technology:Facelets
http://101companies.org/index.php/Technology:Java Bean
http://101companies.org/index.php/Technology:Servlet API
http://101companies.org/index.php/Technology:Java Bean
http://101companies.org/index.php/Technology:Servlet API
http://101companies.org/index.php/Technology:JSP
http://101companies.org/index.php/Technology:Facelets
http://101companies.org/index.php/Technology:Pyjamas
http://101companies.org/index.php/Language:Python
http://101companies.org/index.php/Category:Web-application framework
http://101companies.org/index.php/Language:JavaScript
http://101companies.org/index.php/Category:Web application
http://101companies.org/index.php/Language:Python
http://101companies.org/index.php/Language:JavaScript
http://101companies.org/index.php/Category:Compiler

www.manaraa.com

APPENDIX A. TERMS AND TECHNOLOGIES 101

A.4.3 Technologies
• DOM

• XMLHttpRequest

A.5 Technology Zend framework

A.5.1 Intent
An MVC framework for web programming with PHP

A.5.2 Description
Zend framework is one of the most popular web-application frameworks for PHP. It offers
a good infrastructure based on the MVC pattern and an amount of component libraries
supporting web application development [19, 4].

A.5.3 Technologies
• REST

• SOAP

A.6 Technology GWT

A.6.1 Intent
A Toolkit for web programming in Java

A.6.2 Description
GWT is a web-application framework for developing JavaScript web applications in Java.
It provides a Java-to-JavaScript compiler (see also: Pyjamas) as well as DOM and Ajax
support in combination, and other useful components for web programming [11].

A.6.3 Technologies
• DOM

• XMLHttpRequest

http://101companies.org/index.php/Technology:DOM
http://101companies.org/index.php/Technology:Zend framework
http://101companies.org/index.php/web programming
http://101companies.org/index.php/Language:PHP
http://101companies.org/index.php/Category:Web-application framework
http://101companies.org/index.php/Language:PHP
http://101companies.org/index.php/Category:Web application
http://101companies.org/index.php/Technology:REST
http://101companies.org/index.php/Technology:SOAP
http://101companies.org/index.php/Technology:GWT
http://101companies.org/index.php/Category:Toolkit
http://101companies.org/index.php/web programming
http://101companies.org/index.php/Language:Java
http://101companies.org/index.php/Category:Web-application framework
http://101companies.org/index.php/Language:JavaScript
http://101companies.org/index.php/Category:Web application
http://101companies.org/index.php/Language:Java
http://101companies.org/index.php/Technology:DOM
http://101companies.org/index.php/Web programming
http://101companies.org/index.php/Technology:DOM

www.manaraa.com

APPENDIX A. TERMS AND TECHNOLOGIES 102

A.7 Technology Apache Struts

A.7.1 Intent
A Java based Web-application framework with JSP and Servlets

A.7.2 Description
Apache Struts is a web-application framework highly dedicated to MVC. It affects every
component of MVC, is it the view (JSP), the controller (Java actions in combination with
the Servlet API) or the model (Java services). Apache Struts supports Ajax as well as
REST and SOAP [1].

A.7.3 Technologies
• JSP

• Servlet API

• REST

• SOAP

A.8 Technology Seam

A.8.1 Intent
A Java EE based web-application framework

A.8.2 Description
JBoss Seam is an JSF based Ajax web-application framework for the development of rich
web applications in Java. It is based on a three-tier architecture, where the presentation
layer is handled by JSF [12].

A.8.3 Technologies
• JBoss Application Server

• EJB

• JSF

• JPA

• Hibernate

http://101companies.org/index.php/Technology:Apache Struts
http://101companies.org/index.php/Language:Java
http://101companies.org/index.php/Category:Web-application framework
http://101companies.org/index.php/Technology:JSP
http://101companies.org/index.php/Technology:Servlet API
http://101companies.org/index.php/Category:Web-application framework
http://101companies.org/index.php/Technology:JSP
http://101companies.org/index.php/Language:Java
http://101companies.org/index.php/Technology:Servlet API
http://101companies.org/index.php/Technology:REST
http://101companies.org/index.php/Technology:SOAP
http://101companies.org/index.php/Technology:JSP
http://101companies.org/index.php/Technology:Servlet API
http://101companies.org/index.php/Technology:REST
http://101companies.org/index.php/Technology:SOAP
http://101companies.org/index.php/Technology:Seam
http://101companies.org/index.php/Technology:Java EE
http://101companies.org/index.php/Category:Web-application framework
http://101companies.org/index.php/Technology:JBoss Application Server
http://101companies.org/index.php/Category:Web-application framework
http://101companies.org/index.php/Category:Web application
http://101companies.org/index.php/Language:Java
http://101companies.org/index.php/Three-tier architecture
http://101companies.org/index.php/Technology:JBoss Application Server
http://101companies.org/index.php/Technology:EJB
http://101companies.org/index.php/Technology:JPA
http://101companies.org/index.php/Technology:Hibernate

www.manaraa.com

APPENDIX A. TERMS AND TECHNOLOGIES 103

A.9 Technology XMLHttpRequest

A.9.1 Intent
A JavaScript API for HTTP-Requests

A.9.2 Discussion
XMLHttpRequest is an API for transfering any data over HTTP. Most commonly it is used
in combination with message formats like XML or JSON [35].

A.10 Technology IndexedDB

A.10.1 Intent
A database management system API in the HTML5 ecosystem for client side data storage

A.10.2 Discussion
The JavaScript API IndexedDB provides client side data storage with the help of B-trees
[36].

A.11 Technology Web storage

A.11.1 Intent
A JavaScript API for client side data storage in the HTML5 ecosystem

A.11.2 Discussion
There are four major differences in behaviour between cookies and Web storage [34, 13],
which are shown within this implementation:

• the Web storage offers a largely enhanced amount of data (up to 5MB-10MB for web
storage, 4KB for cookies),

• there is no need to use special parameters within the pages’ URL to refer to a cookie
with the required data,

• the client does not need to transmit data to the server with every request,

• and the data within Web storage never expires, if there is no explicit command to do so.

http://101companies.org/index.php/Technology:XMLHttpRequest
http://101companies.org/index.php/Language:JavaScript
http://101companies.org/index.php/Category:API
http://101companies.org/index.php/Technology:HTTP
http://101companies.org/index.php/Category:API
http://101companies.org/index.php/Technology:HTTP
http://101companies.org/index.php/Language:XML
http://101companies.org/index.php/Language:JSON
http://101companies.org/index.php/Technology:IndexedDB
http://101companies.org/index.php/Category:Database management system
http://101companies.org/index.php/Category:API
http://101companies.org/index.php/Language:HTML5
http://101companies.org/index.php/Category:Client
http://101companies.org/index.php/Language:JavaScript
http://101companies.org/index.php/Category:API
http://101companies.org/index.php/Category:Client
http://101companies.org/index.php/Technology:Web storage
http://101companies.org/index.php/Language:JavaScript
http://101companies.org/index.php/Category:API
http://101companies.org/index.php/Category:Client
http://101companies.org/index.php/Language:HTML5
http://101companies.org/index.php/Technology:Cookie
http://101companies.org/index.php/Category:Client
http://101companies.org/index.php/Category:Server

www.manaraa.com

APPENDIX A. TERMS AND TECHNOLOGIES 104

A.12 Technology Silverlight

A.12.1 Intent
A Web-application framework and a web browser plugin for interactive user interfaces

A.12.2 Discussion
Silverlight supports the development of rich-internet applications with focus on user inter-
face and animations[22].

A.13 Technology WCF

A.13.1 Intent
A framework for asynchronous communication between web service endpoints

A.13.2 Discussion
Windows Communication Foundation (WCF) is a framework used for asynchronous com-
munication between web services and clients. The supported message formats are single
characters up to xml or binary files[23].

http://101companies.org/index.php/Technology:Silverlight
http://101companies.org/index.php/Category:Web-application framework
http://101companies.org/index.php/Category:Web browser
http://101companies.org/index.php/Category:Plugin
http://101companies.org/index.php/Category:User interface
http://101companies.org/index.php/Category:User interface
http://101companies.org/index.php/Technology:WCF
http://101companies.org/index.php/Category:Framework
http://101companies.org/index.php/asynchronous communication
http://101companies.org/index.php/Category:Web service
http://101companies.org/index.php/asynchronous communication
http://101companies.org/index.php/asynchronous communication
http://101companies.org/index.php/Category:Web service
http://101companies.org/index.php/Category:Client

www.manaraa.com

Bibliography

[1] Apache. Struts. Last visited on 17. January 2012. URL: http://struts.
apache.org/.

[2] Engin Bozdag, Ali Mesbah, and Arie van Deursen. A Comparison of Push
and Pull Techniques for Ajax. Online since 16. August 2007. http://
arxiv.org/abs/0706.3984.

[3] Steve Burbeck. Applications Programming in Smalltalk-80(TM): How to
use Model-View-Controller (MVC). Last visited on 06. January 2012. URL:
http://st-www.cs.illinois.edu/users/smarch/st-
docs/mvc.html.

[4] Federico Cargnelutti. Zend framework architecture. Last visited on 8. De-
cember 2011. URL: http://blog.fedecarg.com/2008/07/28/
zend-framework-architecture/.

[5] Ezra Cooper et al. Links: Web Programming Without Tiers. In FMCO 2006r,
pp. 266-296. Editor: Frank S. de Boer et al., Springe. ISBN: 978-3-540-
74791-8. URL:http://dx.doi.org/10.1007/978-3-540-
74792-5_12.

[6] Ian F. Darwin. Java Web MVC Frameworks: Background, Taxonomy, and
Examples. Master thesis, Staffordshire University. Sept. 2004.

[7] DocForge. Software Framework. Last visited on 16. December 2011. URL:
http://docforge.com/wiki/Framework.

[8] Barry Doyle and Cristina Videira Lopes. Survey of Technologies for Web
Application Development. Online since 17. January 2008. URL: http:
//arxiv.org/abs/0801.2618.

[9] Wikimedia Foundation. MediaWiki. Last visited on 16. February 2012. URL:
http://www.mediawiki.org/wiki/MediaWiki.

[10] Jesse James Garrett. Ajax: A New Approach to Web Applications. Last vis-
ited on 2. November 2011. URL: http://www.adaptivepath.com/
ideas/ajax-new-approach-web-applications.

[11] Google. Google Web Toolkit. Last visited on 17. January 2012. URL: http:
//code.google.com/intl/de-DE/webtoolkit/.

105

http://struts.apache.org/
http://struts.apache.org/
http://arxiv.org/abs/0706.3984
http://arxiv.org/abs/0706.3984
http://st-www.cs.illinois.edu/users/smarch/st-docs/mvc.html
http://st-www.cs.illinois.edu/users/smarch/st-docs/mvc.html
http://blog.fedecarg.com/2008/07/28/zend-framework-architecture/
http://blog.fedecarg.com/2008/07/28/zend-framework-architecture/
http://dx.doi.org/10.1007/978-3-540-74792-5_12
http://dx.doi.org/10.1007/978-3-540-74792-5_12
http://docforge.com/wiki/Framework
http://arxiv.org/abs/0801.2618
http://arxiv.org/abs/0801.2618
http://www.mediawiki.org/wiki/MediaWiki
http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications
http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications
http://code.google.com/intl/de-DE/webtoolkit/
http://code.google.com/intl/de-DE/webtoolkit/

www.manaraa.com

BIBLIOGRAPHY 106

[12] Red Hat. Seam Framework. Last visited on 17. January 2012. URL: http:
//seamframework.org/.

[13] Introduction to DOM storage. Last visited on 27. January 2012. URL: http:
//msdn.microsoft.com/en-us/library/cc197062%28VS.
85%29.aspx.

[14] Gerti Kappel et al., eds. Web Engineering: The discipline of Systematic De-
velopment of Web Applications. John Wiley and Sons, Ltd, 2006. ISBN: 0-
470-01554-3.

[15] Ralf Lämmel. 101Companies features. Last visited on 23. February 2012.
URL: http://101companies.org/index.php/Category:
101feature.

[16] Ralf Lämmel. 101Companies System. Last visited on 10. February 2012.
URL: http://101companies.org/index.php/101companies:
System.

[17] Ralf Lämmel, Thomas Schmorleiz, and Andrei Varanovich. 101 ways to cut
salaries. 10 pages. Online since 28. April 2011. URL: http://softlang.
uni-koblenz.de/101companies/cut101/.

[18] Luke Leighton. Pyjamas: Python-based Web Application Development Frame-
work. Last visited on 17. January 2012. URL: http://seamframework.
org/.

[19] Zend technologies Ltd. Zend Framework. Last visited on 17. January 2012.
URL: http://framework.zend.com/.

[20] Ali Mesbah and Arie van Deursen. An Architectural Style for Ajax. In WICSA
2007. Publisher: IEEE Computer Society. ISBN: 978-0-7695-2744-4.
URL: http://doi.ieeecomputersociety.org/10.1109/
WICSA.2007.7.

[21] Leo A. Meyerovich et al. Flapjax: a programming language for Ajax ap-
plications. In OOPSLA 2009, pp. 1-20. Editor: Shail Arora and Gary T.
Leavens, ACM. ISBN: 978-1-60558-766-0. URL: http://doi.acm.
org/10.1145/1640089.1640091.

[22] Microsoft. Silverlight. Last visited on 25. February 2012. URL: http://
www.silverlight.net/.

[23] Microsoft. What is Windows Communication Foundation. Last visited on
25. February 2012. URL: http://msdn.microsoft.com/en-us/
library/ms731082.aspx.

[24] MSDN. Making a Service Available Across Domain Boundaries. Last vis-
ited on 24. January 2012. Jan. 2012. URL: http://msdn.microsoft.
com/en-us/library/cc197955(v=vs.95).aspx.

http://seamframework.org/
http://seamframework.org/
http://msdn.microsoft.com/en-us/library/cc197062%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/cc197062%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/cc197062%28VS.85%29.aspx
http://101companies.org/index.php/Category:101feature
http://101companies.org/index.php/Category:101feature
http://101companies.org/index.php/101companies:System
http://101companies.org/index.php/101companies:System
http://softlang.uni-koblenz.de/101companies/cut101/
http://softlang.uni-koblenz.de/101companies/cut101/
http://seamframework.org/
http://seamframework.org/
http://framework.zend.com/
http://doi.ieeecomputersociety.org/10.1109/WICSA.2007.7
http://doi.ieeecomputersociety.org/10.1109/WICSA.2007.7
http://doi.acm.org/10.1145/1640089.1640091
http://doi.acm.org/10.1145/1640089.1640091
http://www.silverlight.net/
http://www.silverlight.net/
http://msdn.microsoft.com/en-us/library/ms731082.aspx
http://msdn.microsoft.com/en-us/library/ms731082.aspx
http://msdn.microsoft.com/en-us/library/cc197955(v=vs.95).aspx
http://msdn.microsoft.com/en-us/library/cc197955(v=vs.95).aspx

www.manaraa.com

BIBLIOGRAPHY 107

[25] Robert C. Nickerson et al. Taxonomy development in information systems:
Developing a taxonomy of mobile applications. In ECIS 2009, pp. 1138-
1149. Editor: Susan Newell et al.. ISBN: 978-88-6129-391-5. URL: http:
//is2.lse.ac.uk/asp/aspecis/20090094.pdf.

[26] Oracle. JavaServer Faces Technology. Last visited on 17. January 2012.
URL: http://www.oracle.com/technetwork/java/javaee/
javaserverfaces-139869.html.

[27] Cesare Pautasso, Olaf Zimmermann, and Frank Leymann. Restful web ser-
vices vs. ”big”’ web services: making the right architectural decision. In
WWW 2008, pp. 805-814. Editor: Jinpeng Huai et al., ACM. ISBN: 978-1-
60558-085-2. URL:http://doi.acm.org/10.1145/1367497.
1367606.

[28] Simone Paolo Ponzetto and Michael Strube. Taxonomy induction based on
a collaboratively built knowledge repository. In Artificial Intelligence, June
2011, Vol. 175, pp. 1737-1756. Publisher: Elsevier Science Publishers Ltd.,
Essex. URL: http://dx.doi.org/10.1016/j.artint.2011.
01.003.

[29] Dirk Riehle. Framework Design: A Role Modeling Approach. PhD thesis,
ETH Zürich, number: 13509. 2000.

[30] Chris Schalk. JavaServer faces : the complete reference. New York, NY:
Mcgraw-Hill, 2007. ISBN: 0072262400.

[31] Tony Chao Shan and Winnie W. Hua. Taxonomy of Java Web Application
Frameworks. In ICEBE, pp. 378-385. IEEE Computer Society, 2006. ISBN:
0-7695-2645-4. URL: http://doi.ieeecomputersociety.org/
10.1109/ICEBE.2006.98.

[32] THING-MODEL-VIEW-EDITOR: an Example from a planningsystem. Last
visited on 06. January 2012. URL: http://heim.ifi.uio.no/
˜trygver/1979/mvc-1/1979-05-MVC.pdf.

[33] W3C. HTML5. Last visited on 10. February 2012. URL: http://dev.
w3.org/html5/spec/Overview.html.

[34] W3C. Web storage. Last visited on 27. January 2012. URL: http://www.
w3.org/TR/webstorage/.

[35] W3C. XMLHttpRequest. Last visited on 20. January 2012. URL: http:
//www.w3.org/TR/XMLHttpRequest/.

[36] W3C indexedDB. Last visited on 10. January 2012. URL: http://www.
w3.org/TR/IndexedDB/.

[37] Andreas Wende. Klassifikation und Bewertung von Frameworks für die En-
twicklung von Web-Anwendungen. Diplomarbeit, Universitt Leipzig. Sept.
2005.

http://is2.lse.ac.uk/asp/aspecis/20090094.pdf
http://is2.lse.ac.uk/asp/aspecis/20090094.pdf
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html
http://doi.acm.org/10.1145/1367497.1367606
http://doi.acm.org/10.1145/1367497.1367606
http://dx.doi.org/10.1016/j.artint.2011.01.003
http://dx.doi.org/10.1016/j.artint.2011.01.003
http://doi.ieeecomputersociety.org/10.1109/ICEBE.2006.98
http://doi.ieeecomputersociety.org/10.1109/ICEBE.2006.98
http://heim.ifi.uio.no/~trygver/1979/mvc-1/1979-05-MVC.pdf
http://heim.ifi.uio.no/~trygver/1979/mvc-1/1979-05-MVC.pdf
http://dev.w3.org/html5/spec/Overview.html
http://dev.w3.org/html5/spec/Overview.html
http://www.w3.org/TR/webstorage/
http://www.w3.org/TR/webstorage/
http://www.w3.org/TR/XMLHttpRequest/
http://www.w3.org/TR/XMLHttpRequest/
http://www.w3.org/TR/IndexedDB/
http://www.w3.org/TR/IndexedDB/

	Introduction
	Motivation
	Thesis structure
	Structure of implementation documentations

	Popular web-application frameworks
	Subjects of research
	Definition: Web-application framework
	Language-related technology setup
	Web-application framework setup
	Comparison

	Research question
	Definition: popular

	Research Method
	Counting occurences
	Counting backlinks

	Results
	Measurements
	Interpretation

	Threats to validity
	Tools
	Implementations

	Related work
	Taxonomies and classifications
	Building the taxonomy
	Web-application frameworks
	Architecture

	101companies features
	Features of the 101companies project

	Implementations
	101implementation html5local
	Intent
	Languages
	Technologies
	Features
	Motivation
	Illustration
	Architecture
	Usage

	101implementation html5indexedDatabase
	Intent
	Languages
	Technologies
	Features
	Motivation
	Illustration
	Architecture
	Usage

	101implementation html5XMLHttpRequest
	Intent
	Languages
	Technologies
	Features
	Motivation
	Illustration
	Architecture
	Usage

	101implementation html5ajax
	Intent
	Languages
	Technologies
	Features
	Motivation
	Illustration
	Architecture
	Usage

	101implementation html5tree
	Intent
	Languages
	Technologies
	Features
	Motivation
	Illustration
	Architecture
	Usage

	101implementation jsf
	Intent
	Languages
	Technologies
	Features
	Motivation
	Illustration
	Architecture
	Usage

	101implementation zend
	Intent
	Languages
	Technologies
	Features
	Motivation
	Illustration
	Architecture
	Usage

	101implementation pyjamas
	Intent
	Languages
	Technologies
	Features
	Motivation
	Illustration
	Architecture
	Usage

	101implementation gwtTree
	Intent
	Languages
	Technologies
	Features
	Motivation
	Illustration
	Architecture
	Usage

	101implementation seam
	Intent
	Languages
	Technologies
	Features
	Motivation
	Illustration
	Architecture
	Usage

	101implementation strutsAnnotation
	Intent
	Languages
	Technologies
	Features
	Motivation
	Illustration
	Architecture
	Usage

	101implementation silverlight
	Intent
	Languages
	Technologies
	Features
	Motivation
	Illustration
	Architecture
	Usage

	101implementation wcf
	Intent
	Languages
	Technologies
	Features
	Motivation
	Illustration
	Architecture
	Usage

	Conclusion
	Terms and Technologies
	Ajax
	Intent
	Description
	Technologies

	MVC
	Intent
	Discussion

	Technology JSF
	Intent
	Description
	Technologies

	Technology Pyjamas
	Intent
	Description
	Technologies

	Technology Zend framework
	Intent
	Description
	Technologies

	Technology GWT
	Intent
	Description
	Technologies

	Technology Apache Struts
	Intent
	Description
	Technologies

	Technology Seam
	Intent
	Description
	Technologies

	Technology XMLHttpRequest
	Intent
	Discussion

	Technology IndexedDB
	Intent
	Discussion

	Technology Web storage
	Intent
	Discussion

	Technology Silverlight
	Intent
	Discussion

	Technology WCF
	Intent
	Discussion

